
HAL Id: hal-01087611
https://hal.inria.fr/hal-01087611

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matching communication pattern with underlying
hardware architecture

Emmanuel Jeannot, Guillaume Mercier, François Tessier

To cite this version:
Emmanuel Jeannot, Guillaume Mercier, François Tessier. Matching communication pattern with
underlying hardware architecture. 6th European Conference on Computational Fluid Dynamics, Jul
2014, Barcelona, Spain. <hal-01087611>

https://hal.inria.fr/hal-01087611
https://hal.archives-ouvertes.fr


11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

MATCHING COMMUNICATION PATTERN WITH
UNDERLYING HARDWARE ARCHITECTURE

Emmanuel Jeannot1, Guillaume Mercier2 and François Tessier3

1 Inria, LaBRI, 200, Avenue de la Vielle Tour 33405 Talence Cedex, France
http://www.labri.fr/perso/ejeannot/index.html

2 IPB, LaBRI, 200, Avenue de la Vielle Tour 33405 Talence Cedex, France
3 University of Bordeaux, LaBRI, 200, Avenue de la Vielle Tour 33405 Talence Cedex, France

firstname.lastname@inria.fr

Key words: Parallel Programming, High Performance Computing, Multicore Processing,
Processe Affinity, Topology-Aware Mapping

Due to the advent of modern hardware architectures of high-performance computers, the
way the parallel applications are laid out is of paramount importance for performance.
This abstract presents several techniques and algorithms that efficiently address this issue:
the mapping of the application’s virtual topology (for instance its communication pattern)
onto the underlying physical topology. Using such strategy improves the application
overall execution time significantly. We have developed two approaches. One regards
the mapping of application processes during their deployment and the other consists in
load-balancing the execution at runtime to match the dynamic application needs to the
topology. All this work is based on the TreeMatch library [2].

Figure 1: Comaprison of TreeMatch against other map-
ping strategies for different NAS benchmarks. TreeMatch
consistently provides the (near) best solution

TreeMatch is a library to perform pro-
cess placement based on the topology
of the machine and the communication
pattern of the application. It provides
a permutation of the processes to the
processors/cores in order to minimize
the communication costs of the appli-
cation. It has several important fea-
tures: first, the number of processors
can be greater than the number of ap-
plications processes ; it assumes that
the topology is a tree and does not
require valuation of the topology (e.g.
communication speeds) ; it implements different placement algorithms that are switched
according to the input size ; it is able to prevent the use of some resources in case of non-
contiguous resource allocation. TreeMatch is available at: http://treematch.gforge.

inria.fr.



E. Jeannot, G. Mercier, F. Tessier

The static mapping strategy consists in recording the application communication pattern
then applying TreeMatch on this pattern taking into account the underlying topology.
The computed process permutation is then given to the process launcher (e.g. mpiexec)
to map the processes onto the resources, minimizing the communication costs. Results
show that our approach is better than other approaches such as graph partitioning (see
Fig 1).

We also developed two load balancers for Charm++ [1]. Charm++ is a message passing-
based programming environment based on the C++ language. However, while MPI con-
siders processes in its programming model (with a granularity that is most of the time
coarse), Charm++ model is based on a finer granularity by splitting computation in
smaller tasks. A useful mechanism offered by this design allows to perform regular dy-
namic load-balancing.

The two load-balancers we wrote take into account both the computing power and the
hierarchical topology depending on the fact that the application is compute-bound or
communication-bound.

The first load balancer uses TreeMatch to reorder the tasks according to their commu-
nications : the more a task communicates with an other the more it will be close to it.
Then it moves tasks to level the CPU load on each core. This step tries to keep the
communication affinities as much as possible. Finally, the Hungarian algorithm is called
to reorder some groups of tasks in order to minimize their migrations.This load balancer
is designed for compute-bound applications as it favors the leveling of CPU loads.

The second load balancer is a hierarchical one because the tasks reordering is carried out
on two levels of the topology. Indeed, it first migrates groups of chares assigned on each
core in order to reduce the communication cost between these groups. Then, for each
node, it replaces the tasks on cores according to their CPU load and affinities. This last
step is executed in parallel. This algorithm focuses on communication-bound applications
because it first reduces the congestion on the upper links in the topology tree.

These two load balancers gave us improvements for some applications, up to 10% of the
execution time.

REFERENCES

[1] L. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented
System Based on C++,” in Proceedings of Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA) 93. ACM Press, September 1993, pp. 91–
108.

[2] E. Jeannot and G. Mercier, “Near-optimal placement of mpi processes on hierarchical
numa architectures,” Euro-Par 2010-Parallel Processing, pp. 199–210, 2010.

2


