
TAPIOCA: An I/O Library for Optimized
Topology-Aware Data Aggregation on Large-Scale

Supercomputers
François Tessier, Venkatram Vishwanath

Argonne Leadership Computing Facility
Argonne National Laboratory

Lemont, IL, USA
Email: {ftessier,venkat}@anl.gov

Emmanuel Jeannot
Inria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP

Talence, France
Email: emmanuel.jeannot@inria.fr

Abstract—Reading and writing data efficiently from storage
system is necessary for most scientific simulations to achieve
good performance at scale. Many software solutions have been
developed to decrease the I/O bottleneck. One well-known strat-
egy, in the context of collective I/O operations, is the two-
phase I/O scheme. This strategy consists of selecting a subset
of processes to aggregate contiguous pieces of data before
performing reads/writes. In this paper, we present TAPIOCA, an
MPI-based library implementing an efficient topology-aware two-
phase I/O algorithm. We show how TAPIOCA can take advantage
of double-buffering and one-sided communication to reduce as
much as possible the idle time during data aggregation. We also
introduce our cost model leading to a topology-aware aggregator
placement optimizing the movements of data. We validate our
approach at large scale on two leadership-class supercomputers:
Mira (IBM BG/Q) and Theta (Cray XC40). We present the
results obtained with TAPIOCA on a micro-benchmark and the
I/O kernel of a large-scale simulation. On both architectures, we
show a substantial improvement of I/O performance compared
with the default MPI I/O implementation. On BG/Q+GPFS, for
instance, our algorithm leads to a performance improvement by
a factor of twelve while on the Cray XC40 system associated
with a Lustre filesystem, we achieve an improvement of four.

I. INTRODUCTION

In many high-performance computing (HPC) applications,
the way data is moved, allocated or accessed plays a critical
role for the performance. Until recently, computation was,
most of the time, the main performance bottleneck. Today,
however, application developers are facing new challenges
where data management is becoming more and more critical.
Indeed, numerical simulations are generating and accessing
an increasing amount of data. One fundamental part of the
data lifetime is the access to the storage input/output system.1

This I/O requirement can be extremely important: hundreds
of petabytes are commonly accessed during a simulation
campaign. However, current I/O systems and middleware
are facing several problems related to latency, contention,
scalability, and the diversity of I/O patterns. Moreover, the
ratio between computational capability and I/O bandwidth

1We will call this I/O in the remaining of this paper even if an application
performs another kind of I/O: disk, network, etc.

is increasing: for the past 20 years, the ratio FLOPS/IOPS
has increased by a factor of 100 for the top supercomputer
in the Top500 ranking over the years. Therefore, developing
scalable I/O mechanisms is essential in order to fully exploit
the platform capabilities.

Today, HPC systems feature complex interconnect topolo-
gies (e.g., 5D torus, dragonfly) to enable fast communication
between nodes. Moreover, these architectures have a separate
network for accessing the storage system in order to avoid
contention and traffic interference and to enable functional
decoupling. Therefore, performing I/O requires data movement
along several diverse networks and for several hops. Hence,
it is important not only to stage the data within the network
but also to adapt the I/O pattern to the underlying architecture
topology.

Two-phase I/O is a common strategy to reduce contention
and latency onto the I/O system: data are aggregated on a
subset of compute nodes (called aggregator) and then sent to
the storage system. The two-phase I/O approach poses several
issues. On which compute node should a given aggregator
be allocated? How should one optimize communication such
that the aggregation allows for performance improvement (e.g.,
how to fill intermediate buffer, pipeline communication, etc.)?
Moreover, the issue of performance potability is important.
We do not want to design an ad-hoc aggregation framework
for each target system (with its specific network topology and
storage architecture), but we want to provide a generic solution
that works effectively across diverse systems.

In this paper, we present a library called TAPIOCA
(Topology-Aware Parallel I/O: Collective Algorithm), an MPI-
based library for performing two-phase I/O. It consists of an
algorithm to compute the aggregator selection and placement,
and takes into account the system topology, as well as the
application I/O pattern, and enables pipelining of the commu-
nication through the aggregators to the storage. Performance
portability is ensured by a model describing the different cost
of aggregation and transfer to the storage system as well as
a simple yet well-defined API. We evaluate our solution and
demonstrate its scalability by experimenting with several ap-

plications and benchmarks on two high-end high-performance
computing (HPC) systems - one based on an IBM Blue
Gene/Q system with a GPFS file system and a second system
based on an Intel/Cray KNL-based XC40 system with a Lustre
file system. On both systems we compare our approach with
the default MPI I/O implementation, and we show substantial
improvement of I/O access without modifying the code from
one system to another.

The outline of this paper is the following. In Section II,
we present the context of our study. Related work is detailed
in Section III. Our approach and the TAPIOCA library are
described in Section IV. In Section V experimental results are
presented. The conclusion and future work are discussed in
Section VI.

II. CONTEXT AND MOTIVATION

We present in this section an overview of the current
and upcoming storage systems on large-scale supercomputers.
Then, we describe the two-phase I/O scheme implemented in
most of the common MPI I/O implementations to optimize
collective I/O operations.

A. Storage Systems at Scale
Over the past several years, the time spent in I/O for large-

scale simulations has been growing, leading to the need for
improving data movement. With this in mind, efforts have
been made on network topologies to reduce the distance
between data and storage and to isolate the storage system
from compute nodes in order to avoid interference. On the
IBM BG/Q, for example, a 5D-torus network offers a limited
number of hops between compute nodes and storage while
providing different routes to distribute the load. In addition,
a node’s partitioning in blocks of 512 nodes linked to four
I/O nodes reduces as much as possible the impact of I/O
interference between jobs and ensure a good performance
reproducibility. On Cray XC40, a dragonfly network topology
is deployed. Thus, the minimal distance from one node to
another is at most three hops. On this platform, a subset of
nodes, called LNET routers, plays the role of a proxy to the
storage system. Another network is then dedicated to send data
to disk.

A complementary approach consists in multiplying tiers
of memory and storage as data staging areas with various
sizes and performances. For example, SSD-based burst buffers
as intermediate nodes between compute nodes and storage
system can supply a smaller storage capacity but a higher
I/O bandwidth. Certain Intel Knights Landing (KNL) nodes
distributed by Cray with the XC40 architecture come with a
local SSD and a high bandwidth memory bank (MCDRAM)
that can be used as a cache or allocatable memory.

At the same time, parallel file systems have been improved
to support an increasing I/O load in terms of both throughput
and available storage capacity. This software stack is accom-
panied by strong algorithms to balance the I/O load.

Despite these upgrades, however, room remains for im-
provement in parallel I/O and more generally in data move-
ments. In particular, the runtime systems offer an interesting

lever affecting the way data is moved across a large-scale sys-
tem and through the memory and storage hierarchy. TAPIOCA
falls within this scope by proposing an efficient approach for
collective I/O operations.

B. MPI I/O and the Two-Phase I/O Scheme

MPI [1] is commonly used to implement large-scale
distributed-memory applications on high-performance clusters.
MPI I/O is a critical component of MPI for performing I/O.
The collective I/O mechanism in MPI I/O helps applications
effectively read and write data at scale. In collective I/O, all
MPI tasks involved in the communicator call the I/O routine,
typically in a bulk synchronous manner. This type of operation
allows the MPI runtime system to optimize data movement
based on knowledge from the application including parameters
such as data size, and the layout in both memory and storage.

The two-phase I/O algorithm is a well-known and efficient
optimization available in MPI I/O implementations such as
ROMIO [2]. It consists in selecting a subset of processes
to aggregate contiguous pieces of data (aggregation phase)
before writing them to the storage system (I/O phase). Figure 1
depicts this technique using an illustrative example involving
four processes, two of them chosen as aggregators. Thus, the
network contention decreases around the storage system while
the I/O bandwidth is substantially increased by the write of
large chunks of contiguous data. However, this approach as it
has been implemented suffers several limitations. First, even
if the I/O performance is better compared with that of an
unoptimized operation, it usually remains far from the peak
I/O bandwidth achievable. Second, we noticed an inefficient
aggregator placement policy even though a smart aggregator’s
mapping may have a real impact on performance. Third, the
common implementations fail to take advantage of the data
model, the data layout, and the memory and system hierarchy.

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z FileX X X X Y Y

Y Y Z Z Z Z

I/O Phase

Aggr. phase

3210

0 2

Fig. 1: Two-phase I/O mechanism

In this work, we focus on the two-phase I/O scheme and
address several of these limitations. Specifically, we have
developed an I/O library called TAPIOCA on top of MPI I/O
implementing a topology-aware two-phase I/O scheme opti-
mized for large-scale supercomputers. This library has been
created following three key directions: an efficient implemen-
tation of the two-phase I/O algorithm, an improved aggregator

placement taking into account system characteristics and a
generic interface to query system topology information.

III. RELATED WORK

Parallel I/O is an active research topic because of the
increasing requirements of applications for data movement to
memory or storage [3]. While I/O tuning is probably the first
step to increase I/O bandwidth on new architectures [4], [5],
[6], improvements at different layers of the I/O software stack
are also necessary. From a file system perspective, GPFS [7] or
Lustre [8] are examples of widespread highly scalable parallel
file systems. At a library or application level, parallel I/O
libraries such as MPI I/O, part of the MPI-2 [1] standard,
on top of parallel file systems are commonly deployed. In
these, collective I/O enables improved performance. For this,
Chaarawi et al. [9] evaluate various collective I/O write
algorithms. Other approaches to optimizing collective I/O
have also been undertaken using techniques such as process
placement based on the I/O pattern [10] or collective I/O auto-
tuning with machine learning [11].

One of the de facto collective I/O algorithms is called
two-phase I/O [12]. This method adds a level of hierarchy
in collective I/O phases by aggregating data on a subset of
processes before writing it onto the storage system (more
details are given in Section II-B). ROMIO [2] is a popular im-
plementation of MPI I/O using two-phase I/O; it is included in
the widely used MPICH library [13]. A number of approaches
have sought to improve this library and the two-phase I/O
algorithm [14], [15], [16]. Approaches based on multithreading
to overlap aggregation and I/O phases using double buffering
also have been studied in [17], [18]. Nevertheless, the number
of aggregators or the buffer size needed in collective I/O
remains still an open topic [19]. The placement of aggregators
is a well-known problem. Certain approaches focus on data
locality and a polynomial time assignment algorithm (the
Hungarian algorithm) to reduce the communication between
compute nodes and aggregators [20]. Others have concentrated
their efforts on the specific problem of sparse data patterns on
the BG/Q, using an algorithm to take into account paths on
the network topology [21]. A more general method designed
to increase the I/O bandwidth of collective I/O for the previous
version of IBM supercomputers BG/P has been proposed in
[22]. In our previous work [23], we implemented an initial
topology-aware data aggregation method for the BG/Q system.

Our current approach differs from all the above solutions by
combining both an optimized buffering system and a topology-
aware quantitative aggregator mapping strategy targeting any
kind of architecture such as IBM BG/Q and Cray XC40
together with both GPFS and Lustre and being extensible to
address new tiers of storage, while also accounting for the
application’s I/O pattern.

IV. OUR APPROACH

TAPIOCA is an I/O library on top of MPI I/O implementing
a topology-aware two-phase I/O scheme optimized for large-
scale supercomputers. This library has been created following

three key directions: an efficient implementation of the two-
phase I/O algorithm, an improved aggregator placement taking
into account system characteristics and a generic system topol-
ogy interface allowing one to easily query a new architecture.
In the rest of this paper, we describe how our implementation
meets these three points and we present results obtained from
our experiments on the Mira IBM Blue Gene/Q and the Theta
Cray XC40 supercomputers at Argonne National Laboratory.

A. Implementation of the Two-Phase I/O Scheme

Compared with the MPI standard, our approach requires the
description of the upcoming I/O operations before performing
read or write calls. We extract from this information the data
model (multidimensional arrays) and the data layout (array of
structures, structure of arrays). The identification of these data
patterns allows us to determine better I/O scheduling and to
reduce the idle time for all the MPI tasks. Let us take as an
example MPI processes writing three arrays in a file, each one
describing a dimension of coordinates in (x,y,z), following
an array of structures data layout. Algorithm 1 describes
the collective MPI I/O calls needed for that operation. Each
call to MPI_File_write_at_all is a collective operation
independent of the next calls.

Algorithm 1: Collective MPI I/O writes.

1 n← 5;
2 x[n], y[n], z[n];
3 offset← rank × 3× n;
55

6 MPI File write at all (f , offset, x, n, type, status);
7 offset← offset+ n ;
99

10 MPI File write at all (f , offset, y, n, type, status);
11 offset← offset+ n;
1313

14 MPI File write at all (f , offset, z, n, type, status);

With TAPIOCA, users have to describe the upcoming
writes. Algorithm 2 uses the previous example to show how
to call TAPIOCA to write data in file. Since we have three
variables to write, we declare arrays of size 3 describing the
number of elements, the size of the data type, and the offset
in file (for loop starting line 6). Then, we initialize TAPIOCA
with this information. This phase allows our library to schedule
the aggregation phase in order to completely fill an aggregator
buffer before flushing it to the disk. Figure 2 gives another
perspective of what happens when calling three independent
MPI I/O collective writes and TAPIOCA. In our example,
MPI I/O has to flush three almost empty buffers in file while
TAPIOCA can aggregate all the data.

Additionally, we improved both the aggregation and I/O
phases by overlapping them. With this aim in mind, we allo-
cate two buffers per aggregator and supply them as a pipeline:
while aggregating data in the first buffer, an aggregator can
flush the second one to the storage system concurrently. This

Algorithm 2: Collective TAPIOCA writes.

1 n← 5;
2 x[n], y[n], z[n];
3 offset← rank × 3× n;
55

6 for i← 0, i < 3, i← i+ 1 do
7 count[i]← n;
8 type[i]← sizeof (type);
9 ofst[i]← offset+ i× n;

1111

12 TAPIOCA Init (count, type, ofst, 3);
1414

15 TAPIOCA Write (f , offset, x, n, type, status);
16 offset← offset+ n ;
1818

19 TAPIOCA Write (f , offset, y, n, type, status);
20 offset← offset+ n;
2222

23 TAPIOCA Write (f , offset, z, n, type, status);

X Y Z X Y Z

Processes

Data

Aggregator

X X

File

X Y Z X Y Z

P0 P1

Y Y

Z Z

X Y Z X Y Z

P0 P1

X Y Z X Y Z X Y Z X Y Z

MPI I/O TAPIOCA

Fig. 2: Calling three independent MPI I/O collective writes
and TAPIOCA.

can be done with one-sided MPI communication (Remote
Memory Access) to aggregate data in the aggregators’ buffers
and, thanks to non-blocking MPI I/O functions, to effectively
read or write buffers in file. Algorithm 3 details this part of
our method. For each call to TAPIOCA_Write, we recover
information computed during the initialization phase such as
the round number, the target aggregator, the amount of data
to write during this round and the aggregator buffer to put
data in (lines 2 to 5). Then, the while loop starting from
line 8 blocks the processes whose current round is different
from the global round in a fence (barrier in the context of
MPI one-sided communication). Only the processes with the
matching round can lift the barrier. If a process passing this
fence is an aggregator, it flushes the appropriate buffer into
the file. Line 16 just puts the data into the target buffer. If
the process has written all its data, it enters a portion of code
similar to the one starting from line 8. Else, we recursively
call this TAPIOCA_Write function again while updating the

parameters.

Algorithm 3: Data aggregation with TAPIOCA.

1 Function TAPIOCA Write
(f, offset, data, size, type, status)

2 round← GetRound();
3 aggr ← GetAggregatorRank();
4 chunkSize← GetRoundSize(round);
5 bufferId← globalRound % 2;
77

8 while round 6= globalRound do
9 Fence ();

10 if I am an aggregator then
11 iFlush Buffer (bufferId);

12 globalRound← globalRound+ 1;
13 bufferId← globalRound % 2;

1515

16 RMA Put (data, chunkSize, offset, aggr,
bufferId);

1818

19 if chunkSize = size then
20 while globalRound 6= TotalRounds do
21 Fence ();
22 if I am an aggregator then
23 iFlush Buffer (bufferId);

24 globalRound← globalRound+ 1;
25 bufferId← globalRound % 2;

26 else
27 TAPIOCA Write

(f, offset+ chunkSize, data+
roundSize, size− chunkSize, type, status);

B. Topology-aware aggregators placement

The second main contribution of this work on data ag-
gregation concerns the aggregators placement policy. The
various implementations of the MPI-2 standard propose a
couple of aggregators mapping strategies for two-phase I/O.
For example, in MPICH [13] a strategy consists in selecting
the bridge node (i.e. the node directly linked to the I/O node) as
a first aggregator and the other aggregators following a rank
order. This strategy takes into account neither the distance
between the compute nodes and the storage system nor the
amount of data exchanged. Moreover, the process mapping
may severely impact the performance by selecting aggregators
on neighboring nodes inevitably creating contention. Our
strategy involves considering the topology of the architecture
and the data access pattern in an objective function in order
to determine a near-optimal aggregator placement optimizing
data movements. For the rest of this paper, we call “partition”
a subset of nodes hosting processes sharing a contiguous
piece of data in file. The number of aggregators defines the

partition size, each partition electing one aggregator among
the processes.

Given, for each partition:

• VC : The set of compute nodes performing aggregation in
the partition;

• A ∈ VC : An aggregator chosen among compute nodes;
• IO: The storage system (I/O node) of the partition;
• ω(u, v): The amount of data exchanged between nodes u

and v;
• d(u, v): The number of hops between nodes u and v;
• l: The interconnect latency;
• Bi→j : The bandwidth from node i to node j.

Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

C2

Fig. 3: Objective function minimizing the communication
costs to and from an aggregator.

Figure 3 shows the two costs computed in our objective
function for one partition. These two costs model the two
phases of the algorithm.

The cost C1 corresponds to the cost of aggregating data
into aggregator buffers. Every process involved in the partition
computes this cost in a distributed way as if it were chosen as
the aggregator. From a candidate point of view, for each rank
producing data, the aggregation cost is computed and summed
up. Formally, each process A computes the cost C1.

C1 =
∑

i∈VC ,i6=A

(
l × d(i, A) +

ω(i, A)

Bi→A

)
For the next step, the candidate computes the cost of sending

the sum of aggregating data to the storage system (I/O node).
For each process A, we define the cost C2 as follows.

C2 = l × d(A, IO) +
ω(A, IO)

BA→IO

The objective function modeling our topology-aware ag-
gregator placement strategy seeks to minimize the sum of
the costs C1 and C2. Formally, each process in a partition
computes this objective function.

TopoAware(A) = min (C1 + C2)

A call to MPI_Allreduce with the MPI_MINLOC en-
ables our algorithm to choose as an aggregator the process
with the minimal cost. Hence, for each partition an aggregator
is elected. We note that on certain architectures, information
about I/O nodes locality is missing. Theta, one of the two
tested platforms in this paper, is such an architecture. In that
case, the cost C2 is set to 0.

C. Abstraction of the Topology

Proposing a generic approach able to target any architecture
is a significant challenge. In our cost model, we based our
method on variables easy to determine: bandwidth, latency,
distance between nodes and gateways to the storage system.
In order to tackle various topologies making our approach
work on a diverse set of supercomputers, we developed a
generic interface, using c++, to implement our data aggre-
gation method for use on any system. Listing 1 presents
the main function prototypes to implement to take advantage
of aggregator placement on a high-performance architecture.
Some of these values can be computed dynamically during
the execution, while others, depending on the platform, need a
one-time preliminary run of vendor tools to gather topology in-
formation. For example, on BG/Q+GPFS an hardware-specific
MPI extension (MPIX library [24]) offers a set of functions
providing information such as the distance to the I/O node
(MPIX_IO_distance) while on Cray XC40 associated with
a Lustre filesystem, more work is needed to gather the I/O
nodes placement. Overall, the effort required to support a new
architecture is quite low and is independent of the application.

Listing 1: Function prototypes for aggregators placement
i n t ge tBandwid th (i n t l e v e l) ;
i n t g e t L a t e n c y () ;
i n t NetworkDimensions () ;
void RankToCoord ina te s (i n t rank , i n t ∗ coord) ;
i n t I O N o d e s P e r F i l e (char∗ f i l e n a m e , i n t ∗ n o d e s L i s t) ;
i n t DistanceToIONode (i n t rank , i n t IONode) ;
i n t Dis tanceBe tweenRanks (i n t srcRank , i n t des tRank) ;

V. EVALUATION

We evaluated our approach with large-scale experiments
on Mira and Theta, two leadership-class supercomputers at
Argonne National Laboratory. We present our results in this
section.

A. Targeted supercomputers

1) Mira: Mira is a 10 PetaFLOPS IBM BG/Q supercom-
puter ranked in the top ten of the Top500 ranking for years (see
Figure 4). Mira contains 48K nodes interconnected with a 5D-
torus high-speed network providing a theoretical bandwidth of
1.8 GBps per link. Each node hosts 16 hyperthreaded PowerPC
A2 cores (1600 MHz) and 16 GB of main memory. Following
the BG/Q architecture rules, Mira splits the nodes into Psets. A
Pset is a subset of 128 nodes sharing the same I/O node. Two

compute nodes of a Pset offer a 1.8 GBps link to the I/O node.
These nodes are called the bridge nodes. GPFS [7] manages
the 27 PB of storage. In terms of software, we compiled the
test applications and our library with the IBM XL compiler,
v12.1, and used the default MPI installation on Mira based on
MPICH2 v1.5 (MPI-2 standard).

Compute nodes I/O nodes

Storage
Q

D
R

 In
fin

ib
an

d
sw

itc
h

Bridge nodes

5D Torus network
2 GBps per link 2 GBps per link 4 GBps per link

PowerPC A2, 16 cores
 16 GB of DDR3

GPFS filesystem

IO forwarding daemon
 GPFS client

 Pset
128 nodes

 2 per I/O node

Fig. 4: IBM BG/Q architecture

2) Theta: Theta is a 10 PetaFLOPS Cray XC40 super-
computer. This architecture (see Figure 5) consists of more
than 3600 nodes and 864 Aries routers interconnected with a
dragonfly network. The routers are distributed in groups of 96
internally interconnected with 14 GBps electrical links, while
12.5 GBps optical links connect groups together. Each router
hosts four Intel KNL 7250 nodes. A KNL node offers 68
1.60 GHz cores, 192 GB of main memory, a 128 GB SSD,
and 16 GB of MCDRAM. The MCDRAM, also called high-
bandwidth memory, can be used as an additional cache or as
a high-speed allocatable memory (up to 400 GBps). On this
platform, we compiled the test applications and TAPIOCA
with the Cray wrapper invoking the Intel compiler (v17.0)
optimized for this architecture. We used the default Cray MPI
implementation based on MPICH and implementing the MPI-
3 standard.

The storage system on Theta provides 9.2 PB of usable
space managed by the Lustre file system [25], [8]. Figure 6
shows a simple example of Lustre on this supercomputer.
Disks are hosted on OST (object storage target) and accessible
through OSS (object storage server). Theta has 56 OST and
OSS nodes (ratio 1:1). From an application point of view, each
OSS is accessible through 7 LNET nodes allocated among the
compute nodes. Unfortunately, the vendor does not currently
provide a way to know how the data is distributed on LNET
nodes. TAPIOCA offers an abstraction for Lustre that is not
yet implementable. It explains why aggregators placement on
this platform do not take the I/O phase into account for now.

B. Collective I/O Optimization with User-Defined Parameters

To achieve good performance on large-scale supercomputers
with collective I/O operations, users often have to tune their

 Compute node

Storage

 Aries router
Knights Landing proc.
 4 per router

Lustre filesystem

 2D all-to-all structure
 96 routers per group

36 tiles (2 cores, L2)
16 GB MCDRAM
192 GB DDR4
128 GB SSD

 Intel KNL 7250
Dragonfly network

 Elec. links 14 GBps

6
(le

ve
l 2

)

16 (level 1)

Dragonfly network
Opt. links 12.5 GBps

 Compute node

2-cabinet group
 9 groups - 18 cabinets
 16 x 6 routers hosted
 All-to-all

(le
ve

l 3
)

IB FDR
 56 GBps

Service node
 LNET, gateway, …
 Irregular mapping

Fig. 5: Cray XC40 architecture.

IB0 IB1 IB0 IB1

OSS

OST

OSS

OST

OSS

OST

OSS

OST

Aries Router (4 KNL)Service node (LNET)

Group of 7 LNET nodes

2 IB/LNET

File

B
ot

to
m

-u
p

de
si

gn

Fig. 6: Storage system on Theta managed by Lustre.

environment to take advantage of certain optimizations. We
listed the most common parameters that may have an impact
on I/O performance and compared on both architectures a
baseline I/O bandwidth with the default parameters and an
optimized run with I/O tuning. This first study allows us to
present a fair comparison between TAPIOCA and MPI I/O in
the rest of this paper.

To evaluate I/O performance, we ran IOR, a popular I/O
benchmark [26]. We varied the data size read and written
per process from 200 KB to 4 MB. All the I/O calls were
MPI I/O collective operations. A run was repeated 20 times,
and the mean and the standard deviation were calculated.
It has to be noted that we used a recommended subfiling
technique on Mira (one file per Pset) for our experiments on
this architecture.

On Mira (Figure 7), runs with the default parameters gave
up to 7.3 GBps for read and around 2 GBps for write with a

large variability. To increase this I/O bandwidth, we mainly set
environment variables optimizing collective calls and reducing
lock contention by sharing files locks. We note that the default
number of aggregators and the aggregator buffer size set to
their default values (i.e., 16 aggregators per Pset and 16 MB)
offered the best performance. These settings were able to
increase the read bandwidth by 13% on the best case, and
the optimized write bandwidth outperformed three times the
baseline case on 4 MB.

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

I/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Optimized - Read
Optimized - Write

Baseline - Read
Baseline - Write

Fig. 7: I/O bandwidth achieved with IOR benchmark on 512
Mira nodes, 16 ranks per node, with and without user-defined
optimizations.

Figure 8 depicts the same experiment on Theta. On this
platform, IOR with the default parameters reveals a read band-
width of approximately 800 MBps while up to 36 GBps can
be reached with optimized parameters. The write bandwidth is
increased from nearly 200 MBps to 10 GBps in the best case.
The gap is substantial between these two scenarios. Indeed,
by default on Theta, the number of OSTs (disks) is set to
1 and the stripe size (size of the chunks of data distributed
among the OSTs) to 1 MB. Using 48 OSTs and a stripe size
of 8 MB highly increases the I/O bandwidth. As on Mira, two
locking modes are available. Lock sharing set for collective
operations reduces the lock contention and takes part in the
performance improvement. Another parameter is the number
of aggregators per OST in MPI I/O. Our experiments showed
that two aggregators per OST per set of 512 compute nodes (if
48 OSTs are used) gives a good increase. We also identified
a routing algorithm (IN ORDER) that provides better I/O
bandwidth.

In general, writing data is much more expensive than
reading it. For the rest of this paper, we focus our evaluation
on primarily improving write bandwidth though our approach
tackles both.

 0.1

 1

 10

 100

 0 1 2 3 4 5

I/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Optimized - Read
Optimized - Write

Baseline - Read
Baseline - Write

Fig. 8: I/O bandwidth achieved with IOR benchmark on 512
nodes on Theta, 16 ranks per node, with and without user-
defined optimizations. Log scale on y-axis.

C. Microbenchmark

We first compared TAPIOCA with the MPI I/O implementa-
tions installed on the testbeds with a microbenchmark. In this
code, every MPI process writes 1 MB as a contiguous piece of
data in file during a collective call. For each experiment, we
set the user-defined parameters to optimize the I/O bandwidth.

1) Mira: Mira has been studied for years leading to a
well-optimized software stack. Particularly, MPICH2 v1.5, the
default MPI implementation on Mira, has been improved to
fit the BG/Q architecture and offer good performance at scale.
Figure 9 shows the I/O bandwidth achieved with MPI I/O
and TAPIOCA with our microbenchmark. We notice that both
methods provide similar results. Since every process sends
the same amount of data at the same time in one contiguous
chunk, the benefit of a topology-aware aggregators placement
is negligible as well as the advantage of the I/O scheduling
computed in TAPIOCA.

2) Theta: Figure 10 depicts the I/O bandwidth obtained
on 512 Theta-nodes with our micro-benchmark. TAPIOCA
outperforms the default MPI I/O implementation (Cray MPI)
for all message sizes. On the larger case (3.6 MB per rank), the
write bandwidth we can achieve with TAPIOCA is two times
higher than with MPI I/O. This performance improvement can
be attributed to the topology-aware placement of aggregators,
as well as as the use of pipelining of aggregation and I/O
phases. These results point out a good portability of the I/O
performance with TAPIOCA regardless of the architecture or
the weakness of this or that MPI implementation.

This microbenchmark also allowed us to highlight a decisive
correlation between aggregator buffer size set in TAPIOCA
and stripe size of the Lustre file system. Table I shows the
average I/O bandwidth achieved on 512 nodes and 16 ranks
per node with various aggregator buffer sizes and stripe sizes.

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA
MPI I/O

Fig. 9: I/O bandwidth achieved with a microbenchmark tested
on 1,024 Mira nodes, 16 ranks per node. 32 aggregators per
Pset set for TAPIOCA associated with a 32 MB aggregation
buffer size. Average and standard deviation from 10 runs.

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA
MPI I/O

Fig. 10: I/O bandwidth achieved with a microbenchmark tested
on 512 Theta nodes, 16 ranks per node. 48 aggregators set for
TAPIOCA associated with a 8 MB aggregation buffer size.
Stripe size: 8MB. Average and standard deviation from 10
runs.

Specifically, we set the buffer size in TAPIOCA to 4 MB, 8
MB, and 16 MB. For each case, we changed the stripe size in
such a way that we can maintain a certain ratio. We observe
that a 1:1 ratio—that is, an aggregator buffer size equal to the
stripe size—gives the best performance. We took this analysis
into account for the following experiments.

TABLE I: Ratio ”Aggregator buffer size : Stripe size”

Ratio 1 : 8 1 : 4 1 : 2 1 : 1 2 : 1 4 : 1

I/O Bw (GBps) 0.36 0.64 0.91 1.57 1.08 1.14

D. HACC-IO

HACC-IO is the I/O kernel of HACC (Hardware Acceler-
ated Cosmology Code). This large-scale cosmological appli-
cation requires the massive compute power of supercomputers
to simulate the mass evolution of the universe with particle-
mesh techniques. In terms of I/O, every process of a HACC
simulation manages a number of particles. Each particle is
defined by nine variables—XX , Y Y , ZZ, V X , V Y , V Z,
phi, pid, and mask—corresponding to the coordinates, the
velocity vector, and relevant physics properties. The size of a
particle is 38 bytes. A useful base value of 25,000 particles
requires approximately 1 MB. In the following, we first present
our results on Mira with 1,024 and 4,096 nodes and 16 ranks
per node (resp. 16K and 64K processes), then on Theta with
1,024 and 2,048 nodes and 16 ranks per node (resp. 16K and
32K processes). We compare our approach to MPI I/O with
two data layouts: array of structures (AoS) and structure of
arrays (SoA). For these experiments, we vary the data size
per rank from 5K to 100K particles.

1) Mira: Figure 11 shows the results on 1,024 Mira nodes,
with 16 ranks per node and one file per Pset as output. By
varying the number of particles managed by each rank, we
increase the data size on the x-axis. We note that subfiling is an
efficient technique to improve I/O performance on the BG/Q
since up to 90% of the peak I/O bandwidth is achieved by our
topology-aware strategy. We also note that we outperform the
default implementation even on large messages.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA AoS
MPI I/O AoS

TAPIOCA SoA
MPI I/O SoA

Fig. 11: I/O bandwidth achieved on Mira by writing one file
per Pset from 1,024 nodes (16 ranks/node). TAPIOCA: 16
aggregators per Pset, 16 MB aggregator buffer size.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA AoS
MPI I/O AoS

TAPIOCA SoA
MPI I/O SoA

Fig. 12: I/O bandwidth achieved on Mira by writing one file
per Pset from 4,096 nodes (16 ranks/node). TAPIOCA: 16
aggregators per Pset, 16 MB aggregator buffer size.

Figure 12 presents our experiments in the same configura-
tion as the previous ones except that we ran it on 4,096 Mira
nodes. The behavior is similar, with the peak I/O bandwidth
almost reached (the peak is estimated to 89.6 GBps on this
node count). As with experiments on 1,024 nodes, the gap with
MPI I/O decreases as the data size increases. In any case, the
I/O performance is substantially improved for both AoS and
SoA layouts.

2) Theta: Our experiments on Theta show a good I/O
performance gain as well. Figure 13 depicts the I/O bandwidth
obtained with HACC-IO on 1,024 nodes with 16 ranks per
node. The best results for both MPI I/O and TAPIOCA
were obtained with 4 aggregators per OST (192 aggregators
in total). The stripe size and stripe count were identical in
both cases to make a fair comparison. However, TAPIOCA
greatly surpasses the default MPI I/O implementation on this
platform regardless of the data layout. With approximately
1 MB produced per rank, our approach is around 7 times
faster. This difference tends to decrease when the data size
is increased.

On 2,048 nodes (Figure 14), we observed similar results.
The stripe size and stripe count were identical in both cases to
make a fair comparison. To improve I/O performance, we set
the number of aggregators to 8 per OST for both methods (384
in total). Again, a significant gap exists between TAPIOCA
and the tested MPI I/O implementation. Even on the largest
case (3.6 MB) and an array of structures data layout, our
method is 4 times faster than MPI I/O.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown a technique to improve
I/O performance at scale. In particular,, we have presented
TAPIOCA, an I/O library on top of MPI I/O, implementing

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA AoS
MPI I/O AoS

TAPIOCA SoA
MPI I/O SoA

Fig. 13: I/O bandwidth achieved on Theta from 1,024 nodes
(16 ranks/node). Lustre: 48 OSTs, 16 MB stripe size. TAPI-
OCA: 192 aggregators, 16 MB aggregator buffer size.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

TAPIOCA AoS
MPI I/O AoS

TAPIOCA SoA
MPI I/O SoA

Fig. 14: I/O bandwidth achieved on Theta from 2048 nodes (16
ranks/node). Lustre: 48 OSTs, 16 MB stripe size. TAPIOCA:
384 aggregators, 16 MB aggregator buffer size.

a topology-aware optimized version of the two-phase I/O
scheme. We designed TAPIOCA with two pipelined aggre-
gators buffers filled thanks to MPI one-sided communication
and flushed with non-blocking calls to overlap aggregation
and I/O phases. We also benefited from the architecture’s
characteristics to place aggregators and tune the algorithm
(number of aggregators, buffer size, cost model). Thus, on
a simple microbenchmark, we showed at least the same I/O
performance as MPI I/O on a well-known platform and a good

improvement on a more recent architecture. On the I/O kernel
of a large-scale cosmological simulation, TAPIOCA was up to
12 times faster than the MPI I/O implementation on the BG/Q
with a specific data layout. On the Cray XC40 supercomputer,
we also highly outperformed MPI I/O with the same code
showing an excellent performance portability. Our large-scale
experiments on two different architectures also highlighted the
scalability of our algorithm as well as our generic approach.

We now plan to extend this library to one-to-many data
movements from one level of memory hierarchy to another.
For instance, one possibility is a method that efficiently
aggregates data from the DRAM on the MCDRAM on KNL in
order to move it to burst buffers in an optimized manner. An-
other research track is to develop new aggregators placement
strategies taking into account more characteristics (routes, etc.)
and data layouts (meshes, 2D and 3D arrays, etc.) A more
short-term goal involves including our approach in widely used
I/O libraries such as MPI I/O or HDF5.

ACKNOWLEDGMENT

This research has been funded in part and used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract no.
DE-AC02-06CH11357. This work was supported in part by
the U. Department of Energy, Office of Science, ASCR, under
award numbers 57L32, 57L11, 57K50, and 5080500. This
research is partially supported by the NCSA-Inria-ANL-BSC-
JSC-Riken Joint-Laboratory on Extreme Scale Computing
(JLESC).

REFERENCES

[1] M. P. I. Forum, “MPI-2: Extensions to the Message-Passing Interface,”
July 1997, http://www.mpi-forum.org/docs/docs.html.

[2] R. Thakur, W. Gropp, and E. Lusk, “A case for using MPIs derived
datatypes to improve I/O performance,” in Proceedings of SC98: High
Performance Networking and Computing. ACM Press, November
1998. [Online]. Available: http://www.mcs.anl.gov/ thakur/dtype/

[3] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao, “A multiplatform study of I/O
behavior on petascale supercomputers,” in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’15. New York, NY, USA: ACM, 2015, pp. 33–
44. [Online]. Available: http://doi.acm.org/10.1145/2749246.2749269

[4] S. Byna, R. Sisneros, K. Chadalavada, and Q. Koziol, “Tuning
parallel I/O on Blue Waters for writing 10 trillion particles,” in
”Cray User Group (CUG) meeting”, Apr 2015. [Online]. Available:
https://sdm.lbl.gov/ sbyna/research/papers/201504-CUG-VPICBW.pdf

[5] M. S. Breitenfeld, K. Chadalavada, R. Sisneros, S. Byna, Q. Koziol,
N. Fortner, Prabhat, and V. Vishwanath, “Recent progress in tuning
performance of large-scale I/O with parallel HDF5,” 11 2014.
[Online]. Available: http://www.pdsw.org/pdsw14/wips/breitenfeld-wip-
pdsw14.pdf

[6] H. Bui, H. Finkel, V. Vishwanath, S. Habib, K. Heitmann, J. Leigh,
M. Papka, and K. Harms, “Scalable parallel I/O on a Blue Gene/Q
supercomputer using compression, topology-aware data aggregation,
and subfiling,” in 2014 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, Feb 2014, pp.
107–111.

[7] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083349

[8] “Lustre filesystem website,” http://lustre.org/.
[9] M. Chaarawi, S. Chandok, and E. Gabriel, Performance Evaluation of

Collective Write Algorithms in MPI I/O. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 185–194.

[10] V. Venkatesan, R. Anand, J. Subhlok, and E. Gabriel, “Optimized
process placement for collective I/O operations,” in Proceedings of
the 20th European MPI Users’ Group Meeting, ser. EuroMPI ’13.
New York, NY, USA: ACM, 2013, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2488551.2488567

[11] F. Isaila, P. Balaprakash, S. M. Wild, D. Kimpe, R. Latham, R. Ross,
and P. D. Hovland, “Collective I/O tuning using analytical and machine-
learning models,” in IEEE Cluster 2015, IEEE. Chicago, IL: IEEE,
09/2015 2015.

[12] J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved
parallel I/O via a two-phase run-time access strategy,” SIGARCH
Comput. Archit. News, vol. 21, no. 5, pp. 31–38, Dec. 1993. [Online].
Available: http://doi.acm.org/10.1145/165660.165667

[13] W. Gropp, “MPICH2: A new start for MPI implementations,” in
Proceedings of the 9th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing
Interface. London, UK, UK: Springer-Verlag, 2002, pp. 7–. [Online].
Available: http://dl.acm.org/citation.cfm?id=648139.749473

[14] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective
I/O in ROMIO,” in Proceedings of the The 7th Symposium on the
Frontiers of Massively Parallel Computation, ser. FRONTIERS ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 182–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=795668.796733

[15] ——, “On implementing MPI-IO portably and with high performance,”
in Proceedings of the Sixth Workshop on I/O in Parallel and Distributed
Systems, ser. IOPADS ’99. New York, NY, USA: ACM, 1999, pp.
23–32. [Online]. Available: http://doi.acm.org/10.1145/301816.301826

[16] ——, “Optimizing noncontiguous accesses in MPI I/O,” Parallel
Comput., vol. 28, no. 1, pp. 83–105, Jan. 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0167-8191(01)00129-6

[17] Y. Tsujita, H. Muguruma, K. Yoshinaga, A. Hori, M. Namiki, and
Y. Ishikawa, “Improving collective I/O performance using pipelined
two-phase I/O,” in Proceedings of the 2012 Symposium on High
Performance Computing, ser. HPC ’12. San Diego, CA, USA: Society
for Computer Simulation International, 2012, pp. 7:1–7:8. [Online].
Available: http://dl.acm.org/citation.cfm?id=2338816.2338823

[18] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, and Y. Ishikawa,
“Multithreaded two-phase I/O: Improving collective MPI-IO perfor-
mance on a Lustre file system,” in 2014 22nd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
Feb 2014, pp. 232–235.

[19] M. Chaarawi and E. Gabriel, “Automatically selecting the number of
aggregators for collective I/O operations,” in 2011 IEEE International
Conference on Cluster Computing (CLUSTER), Austin, TX, USA,
September 26-30, 2011, 2011, pp. 428–437. [Online]. Available:
http://dx.doi.org/10.1109/CLUSTER.2011.79

[20] R. Filgueira, D. E. Singh, J. C. Pichel, F. Isaila, and J. Carretero,
“Data locality aware strategy for two-phase collective I/O,” in High
Performance Computing for Computational Science - VECPAR 2008,
8th International Conference, Toulouse, France, June 24-27, 2008.
Revised Selected Papers, 2008, pp. 137–149. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-92859-1 14

[21] H. Bui, J. Leigh, E.-S. Jung, V. Vishwanath, and M. E. Papka,
“Improving data movement performance for sparse data patterns on the
Blue Gene/Q supercomputer.” in ICPP Workshops. IEEE Computer
Society, 2014, pp. 302–311. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icppw/icppw2014.html#BuiLJVP14

[22] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka, “Topology-
aware data movement and staging for I/O acceleration on Blue
Gene/P supercomputing systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 19:1–
19:11. [Online]. Available: http://doi.acm.org/10.1145/2063384.2063409

[23] F. Tessier, P. Malakar, V. Vishwanath, E. Jeannot, and F. Isaila,
“Topology-aware data aggregation for intensive I/O on large-scale
supercomputers,” in Proceedings of the First Workshop on Optimization
of Communication in HPC, ser. COM-HPC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 73–81. [Online]. Available:
https://doi.org/10.1109/COM-HPC.2016.13

[24] M. Gilge et al., IBM system blue gene solution - blue gene/Q application
development. IBM Redbooks, 2014.

[25] P. Schwan, “Lustre: Building a file system for 1,000-node clusters,” in
PROCEEDINGS OF THE LINUX SYMPOSIUM, 2003, p. 9.

[26] “IOR: Parallel filesystem I/O benchmark,” https://github.com/LLNL/ior.

