
TAPIOCA: An I/O Library for Optimized Topology-Aware Data
Aggregation on Large-Scale Supercomputers

François Tessier∗, Venkatram Vishwanath∗, Emmanuel Jeannot†

∗Argonne National Laboratory, USA
†Inria Bordeaux Sud-Ouest, France

Wednesday 6th September, 2017

Data Movement at Scale

I Computational science simulation in scientific domains such as in
materials, high energy physics, engineering, have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers

 0.0001

 0.001

 0.01

 0.1

 1997 2001 2005 2009 2013 2017

R
a
ti

o
 o

f
I/

O
 (

T
B

/s
)

to
 F

lo
p

s
(T

F
/s

)
in

 p
e
rc

e
n

t

Years

IOPS/FLOPS of the #1 system in Top 500

Complex Interconnect Hierarchies and Filesystems

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.

Compute nodes I/O nodes

Storage
Q

D
R

 In
fin

ib
an

d
sw

itc
h

Bridge nodes

5D Torus network
2 GBps per link 2 GBps per link 4 GBps per link

PowerPC A2, 16 cores
 16 GB of DDR3

GPFS filesystem

IO forwarding daemon
 GPFS client

 Pset
128 nodes

 2 per I/O node

Mira
- 49,152 nodes / 786,432 cores
- 768 TB of memory
- 27 PB of storage, 330 GB/s (GPFS)
- 5D Torus network
- Peak performance: 10 PetaFLOPS

Complex Interconnect Hierarchies and Filesystems

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.

IB0 IB1 IB0 IB1

OSS

OST

OSS

OST

OSS

OST

OSS

OST

Aries Router (4 KNL)

Service node (LNET)

Group of 7 LNET nodes

2 IB/LNET

File

B
ot

to
m

-u
p

de
si

gn

Dragonfly network

Theta
- 3624 Intel KNL 7250 nodes
- 56 TB HBM / 679 TB DDR4
- 9.2 PB of storage
- Aries Dragonfly network
- Peak performance: 9.6 PFlops

Two-phase I/O

I Selects a subset of processes to aggregate data before writing it to the
storage system

I Improves I/O performance by writing larger data chunks
I Available in MPI I/O implementations such as ROMIO

Limitations:
I Poor for small messages

(from experiments)
I Inefficient aggregator

placement policy
I Fails to take advantage of

data model, data layout
and memory hierarchy

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z FileX X X X Y Y

Y Y Z Z Z Z

2 - I/O Phase

1 - Aggr. Phase

P0 P1 P2 P3

P0 P2

Figure: Two-phase I/O mechanism

TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale featuring:

Efficient implementation of the Two-phase I/O scheme
• Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
• Captures the data model and data layout to optimize the I/O scheduling

Interconnect architecture abstraction facilitating the I/O performance
portability
Topology-aware aggregator placement taking into account

• The topology of the architecture
• The data access pattern

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 1 1

X X X

X Y

RMA operations

Non-blocking
MPI calls

TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale featuring:

Efficient implementation of the Two-phase I/O scheme
• Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
• Captures the data model and data layout to optimize the I/O scheduling

Interconnect architecture abstraction facilitating the I/O performance
portability
Topology-aware aggregator placement taking into account

• The topology of the architecture
• The data access pattern

Algorithm 1: Collective MPI I/O
1 n← 5;
2 x [n], y [n], z[n];
3 ofst ← rank × 3× n;
55

6 MPI_File_write_at_all (f , ofst, x , n, type, status);
7 ofst ← ofst + n ;
99

10 MPI_File_write_at_all (f , ofst, y , n, type, status);
11 ofst ← ofst + n;
1313

14 MPI_File_write_at_all (f , ofst, z, n, type, status);

Algorithm 2: TAPIOCA
1 n← 5;
2 x [n], y [n], z[n];
3 ofst ← rank × 3× n;
55

6 for i ← 0, i < 3, i ← i + 1 do
7 count[i]← n;
8 type[i]← sizeof (type);
9 ofst[i]← ofst + i × n;

1111

12 TAPIOCA_Init (count, type, ofst, 3);
1414

15 TAPIOCA_Write (f , ofst, x , n, type, status);
16 ofst ← ofst + n ;
1818

19 TAPIOCA_Write (f , ofst, y , n, type, status);
20 ofst ← ofst + n;
2222

23 TAPIOCA_Write (f , ofst, z, n, type, status);

TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale featuring:

Efficient implementation of the Two-phase I/O scheme
• Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
• Captures the data model and data layout to optimize the I/O scheduling

Interconnect architecture abstraction facilitating the I/O performance
portability
Topology-aware aggregator placement taking into account

• The topology of the architecture
• The data access pattern

X Y Z X Y Z

Processes

Data

Aggregator

X X

File

X Y Z X Y Z

P0 P1

Y Y

Z Z

X Y Z X Y Z

P0 P1

X Y Z X Y Z X Y Z X Y Z

MPI I/O TAPIOCA

TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale featuring:

Efficient implementation of the Two-phase I/O scheme
• Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
• Captures the data model and data layout to optimize the I/O scheduling

Interconnect architecture abstraction facilitating the I/O performance
portability
Topology-aware aggregator placement taking into account

• The topology of the architecture
• The data access pattern

Abstractions for Interconnect Topology

I Performance portability on first-class supercomputers
Same application code running on various platforms
Same optimization algorithms using our interconnect abstraction

I Topology characteristics include:
Spatial coordinates, network dimensions
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns and uncertainties such as routing

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
Source: LLNL / LBNL.

Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

I Computed by each process independently in O(n), n = |VC |
I Contention-aware algorithm: static and dynamic routing policies, unknown

vendors information such as routing policy or data distribution among I/O
nodes, ...

Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A : Aggregator

C2

I Computed by each process independently in O(n), n = |VC |
I Contention-aware algorithm: static and dynamic routing policies, unknown

vendors information such as routing policy or data distribution among I/O
nodes, ...

Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

C2

I Computed by each process independently in O(n), n = |VC |
I Contention-aware algorithm: static and dynamic routing policies, unknown

vendors information such as routing policy or data distribution among I/O
nodes, ...

Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

C2

I Computed by each process independently in O(n), n = |VC |
I Contention-aware algorithm: static and dynamic routing policies, unknown

vendors information such as routing policy or data distribution among I/O
nodes, ...

Experiments

HACC-IO
I I/O part of a large-scale cosmological application simulating the mass

evolution of the universe with particle-mesh techniques
I Each process manages particles defined by 9 variables (38 bytes)

XX , YY , ZZ , VX , VY , VZ , phi , pid and mask
I Two data layout: array of structures (AoS) and structure of arrays (SoA)

Experimental setup
I Theta, a Cray XC40 supercomputer with a Lustre filesystem

Single shared file stripped among OST
48 OST, 16MB stripe size, 4 aggr. per OST, 16MB buffer size (Table 2)

I Mira, an IBM BG/Q supercomputer with GPFS
One file per Pset (128 nodes)
16 aggregators per Pset, 16MB buffer size (MPI I/O configuration)

I Average and standard deviation on 10 runs

Table: Lustre: ratio "Aggregator buffer size : Stripe size"

Ratio 1 : 8 1 : 4 1 : 2 1 : 1 2 : 1 4 : 1
I/O Bw (GBps) 0.36 0.64 0.91 1.57 1.08 1.14

Experiments

HACC-IO
I I/O part of a large-scale cosmological application simulating the mass

evolution of the universe with particle-mesh techniques
I Each process manages particles defined by 9 variables (38 bytes)

XX , YY , ZZ , VX , VY , VZ , phi , pid and mask
I Two data layout: array of structures (AoS) and structure of arrays (SoA)

Experimental setup
I Theta, a Cray XC40 supercomputer with a Lustre filesystem

Single shared file stripped among OST
48 OST, 16MB stripe size, 4 aggr. per OST, 16MB buffer size (Table 2)

I Mira, an IBM BG/Q supercomputer with GPFS
One file per Pset (128 nodes)
16 aggregators per Pset, 16MB buffer size (MPI I/O configuration)

I Average and standard deviation on 10 runs

Table: Lustre: ratio "Aggregator buffer size : Stripe size"

Ratio 1 : 8 1 : 4 1 : 2 1 : 1 2 : 1 4 : 1
I/O Bw (GBps) 0.36 0.64 0.91 1.57 1.08 1.14

HACC-IO on Cray XC40 + Lustre

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 2.7x

W: 3.8x

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(a) Array of Structures data layout

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 2.3x

W: 3.6xI/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(b) Structure of Arrays data layout

Figure: 1024 Theta-nodes (KNL), 16 ranks/node - 48 OSTs, 16MB stripe size, 192
aggregators - TAPIOCA: 16MB aggregators buffer size, 192 aggregators

I I/O bandwidth increased by a factor of 3x with an AoS data layout
I Significant improvement on smaller messages for the SoA case (up to 3.6x)
I Same I/O performance improvement on 2048 nodes

HACC-IO on IBM BG/Q + GPFS

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 6.7x

W: 10.6x

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(a) Array of Structures data layout

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 1.3x

W: 1.2x

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

(b) Structure of Arrays data layout

Figure: 1024 Mira-nodes, 16 ranks/node, subfiling - 16 aggragators/Pset, 16MB
aggregators buffer size

I 90% of the peak I/O bandwidth (22.4 GBps) achieved with TAPIOCA
I Large gap between MPI I/O and TAPIOCA on an AoS data layout (I/O

scheduling)
I Scalable algorithm tested on 4096 nodes with similar results

Conclusion

I TAPIOCA, an optimized I/O library incorporating
Topology-aware aggregator placement
Optimized data movement with I/O scheduling and pipelining
Interconnect abstraction

I Very good performance at scale, outperforming MPI I/O
I On HACC-IO, up to 10.6x improvement on IMB BG/Q+GPFS and up to

3.8x on a Cray XC40+Lustre supercomputer
I Scalability evaluated on more than 65K ranks
I Performance portability on two leadership-class supercomputers

Same application code running on both platforms
Same optimization algorithms using an interconnect abstraction

Conclusion

Future Work
I Move toward a generic data movement library for data-intensive

applications exploiting deep memory/storage hierarchies as well as
interconnect to facilitate I/O, in-transit analysis, data transformation,
data/code coupling, workflows, ...

X Y Z X Y Z X Y Z X Y Z

Application

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z TargetX X X X Y Y

Y Y Z Z Z Z

P0 P1 P2 P3

P0 P2 DRAM, MCDRAM,
NVRAM, BB, ...

DRAM, MCDRAM,
NVRAM, PFS, BB, ...

DRAM, MCDRAM, ...

Dragonfly, torus, ...

Dragonfly, torus, ...

Network Memory/Storage

Conclusion

Acknowledgments
I Argonne Leadership Computing Facility at Argonne National Laboratory
I DOE Office of Science, ASCR
I NCSA-Inria-ANL-BSC-JSC-Riken Joint-Laboratory on Extreme Scale

Computing (JLESC)
I Proactive Data Containers (PDC) project

Conclusion

Thank you for your attention!
ftessier@anl.gov

