
TAPIOCA: An I/O Library for Optimized Topology-Aware Data
Aggregation on Large-Scale Supercomputers

François Tessier∗, Venkatram Vishwanath∗, Emmanuel Jeannot†

∗Argonne National Laboratory, USA
†Inria Bordeaux Sud-Ouest, France

Wednesday 6th September, 2017



Data Movement at Scale

I Computational science simulation in scientific domains such as in
materials, high energy physics, engineering, have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers
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Complex Interconnect Hierarchies and Filesystems

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.
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Two-phase I/O

I Selects a subset of processes to aggregate data before writing it to the
storage system

I Improves I/O performance by writing larger data chunks
I Available in MPI I/O implementations such as ROMIO

Limitations:
I Poor for small messages

(from experiments)
I Inefficient aggregator

placement policy
I Fails to take advantage of

data model, data layout
and memory hierarchy
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TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale featuring:

Efficient implementation of the Two-phase I/O scheme
• Pipelining (RMA, non-blocking calls) of aggregation and I/O phases
• Captures the data model and data layout to optimize the I/O scheduling

Interconnect architecture abstraction facilitating the I/O performance
portability
Topology-aware aggregator placement taking into account

• The topology of the architecture
• The data access pattern
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Algorithm 1: Collective MPI I/O
1 n← 5;
2 x [n], y [n], z[n];
3 ofst ← rank × 3× n;
55

6 MPI_File_write_at_all (f , ofst, x , n, type, status);
7 ofst ← ofst + n ;
99

10 MPI_File_write_at_all (f , ofst, y , n, type, status);
11 ofst ← ofst + n;
1313

14 MPI_File_write_at_all (f , ofst, z, n, type, status);

Algorithm 2: TAPIOCA
1 n← 5;
2 x [n], y [n], z[n];
3 ofst ← rank × 3× n;
55

6 for i ← 0, i < 3, i ← i + 1 do
7 count[i ]← n;
8 type[i ]← sizeof (type);
9 ofst[i ]← ofst + i × n;

1111

12 TAPIOCA_Init (count, type, ofst, 3);
1414

15 TAPIOCA_Write (f , ofst, x , n, type, status);
16 ofst ← ofst + n ;
1818

19 TAPIOCA_Write (f , ofst, y , n, type, status);
20 ofst ← ofst + n;
2222

23 TAPIOCA_Write (f , ofst, z, n, type, status);



TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale featuring:
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Abstractions for Interconnect Topology

I Performance portability on first-class supercomputers
Same application code running on various platforms
Same optimization algorithms using our interconnect abstraction

I Topology characteristics include:
Spatial coordinates, network dimensions
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns and uncertainties such as routing

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
Source: LLNL / LBNL.



Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A  : Aggregator

C1

I Computed by each process independently in O(n), n = |VC |
I Contention-aware algorithm: static and dynamic routing policies, unknown

vendors information such as routing policy or data distribution among I/O
nodes, ...
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I Computed by each process independently in O(n), n = |VC |
I Contention-aware algorithm: static and dynamic routing policies, unknown

vendors information such as routing policy or data distribution among I/O
nodes, ...
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Experiments

HACC-IO
I I/O part of a large-scale cosmological application simulating the mass

evolution of the universe with particle-mesh techniques
I Each process manages particles defined by 9 variables (38 bytes)

XX , YY , ZZ , VX , VY , VZ , phi , pid and mask
I Two data layout: array of structures (AoS) and structure of arrays (SoA)

Experimental setup
I Theta, a Cray XC40 supercomputer with a Lustre filesystem

Single shared file stripped among OST
48 OST, 16MB stripe size, 4 aggr. per OST, 16MB buffer size (Table 2)

I Mira, an IBM BG/Q supercomputer with GPFS
One file per Pset (128 nodes)
16 aggregators per Pset, 16MB buffer size (MPI I/O configuration)

I Average and standard deviation on 10 runs

Table: Lustre: ratio "Aggregator buffer size : Stripe size"

Ratio 1 : 8 1 : 4 1 : 2 1 : 1 2 : 1 4 : 1
I/O Bw (GBps) 0.36 0.64 0.91 1.57 1.08 1.14
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HACC-IO on Cray XC40 + Lustre
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(b) Structure of Arrays data layout

Figure: 1024 Theta-nodes (KNL), 16 ranks/node - 48 OSTs, 16MB stripe size, 192
aggregators - TAPIOCA: 16MB aggregators buffer size, 192 aggregators

I I/O bandwidth increased by a factor of 3x with an AoS data layout
I Significant improvement on smaller messages for the SoA case (up to 3.6x)
I Same I/O performance improvement on 2048 nodes



HACC-IO on IBM BG/Q + GPFS
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(b) Structure of Arrays data layout

Figure: 1024 Mira-nodes, 16 ranks/node, subfiling - 16 aggragators/Pset, 16MB
aggregators buffer size

I 90% of the peak I/O bandwidth (22.4 GBps) achieved with TAPIOCA
I Large gap between MPI I/O and TAPIOCA on an AoS data layout (I/O

scheduling)
I Scalable algorithm tested on 4096 nodes with similar results



Conclusion

I TAPIOCA, an optimized I/O library incorporating
Topology-aware aggregator placement
Optimized data movement with I/O scheduling and pipelining
Interconnect abstraction

I Very good performance at scale, outperforming MPI I/O
I On HACC-IO, up to 10.6x improvement on IMB BG/Q+GPFS and up to

3.8x on a Cray XC40+Lustre supercomputer
I Scalability evaluated on more than 65K ranks
I Performance portability on two leadership-class supercomputers

Same application code running on both platforms
Same optimization algorithms using an interconnect abstraction



Conclusion

Future Work
I Move toward a generic data movement library for data-intensive

applications exploiting deep memory/storage hierarchies as well as
interconnect to facilitate I/O, in-transit analysis, data transformation,
data/code coupling, workflows, ...
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