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Computing at Scale

I Large-scale parallel simulations: climate, heart modelling, cosmology, etc.
I Increasing number of cores on supercomputers

The more parallelization, the bigger impact of load imbalance
Applications need to communicate even more

I Complex topologies: interconnection networks, memory hierarchy (NUMA
effects)
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What about combining CPU load-balancing and data locality to optimize
performance of large-scale applications?
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Charm++ and Load-balancing

I Parallel object-oriented programming language based on C++
I Fine-grained paradigm: cooperating objects called chares
I Plugable load balancing algorithms at launch time
I Load balancers able to natively migrate chares
I Adaptive runtime system supplying chares and cores statistics

std::vector<ProcInfo> procs

ProcArray → getAverageLoad()
resetTotalLoad()

ProcInfo
getTotalLoad()
getOverhead()
setTotalLoad()
isAvailable()

std::vector<Vertex> vertices

ObjGraph → convertDecisions()

Vertex
getVertexId()
getVertexLoad()
getCurrentPe()
getNewPe()
setNewPe()
isMigratable()

Edge
getNeighborId()
getNumBytes()
getNumMsg()

std::vector<Edge> sendToList
std::vector<Edge> recvFromList

Figure: Charm++ data structures
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The TreeMatch Algorithm

I Algorithm and environment to compute processing entities placement
based on their affinities and NUMA topology

I Requires tree topology, based on a qualitative approach
I Input:

The affinity pattern of the application
A model (tree) of the underlying architecture (qualitative approach)

I Output:
A processes permutation σ such that σi is the core number on which we
have to bind the processing entity i

I Goal:
Minimize the sum of the communications between processes weighted by
the number of hops (minDistComm(σ))

I Combinatorial complexity with optimality to 128 processing entities then
heuristic for larger input

1: Affinity

2: Topology

3: Objective function

minDistComm(σ)

Placement

σ =(0,3,1,4,2,5)
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TreeMatchLB

I Load balancing algorithm for communication-bound applications
Improve data locality dynamically (temporality)
CPU load-balancing based on refinement

I Hierarchical and distributed algorithm
Reorders groups of chares on nodes (LibTopoMap)
Reorders chares inside each node: TreeMatch with constraints
Each node in parallel

Cores

Memory

0 2 1 3 0 2 1 3

Groups of chares assigned on nodes

Nodes

LibTopoMap

Network (tree, torus, etc)
Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint
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TreeMatchLB - Inter-node placement

I TreeMatch works only on tree topologies
I LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network

I Algorithm steps
1 Simple load refinement by

swapping chares
2 Convert the batch scheduler

allocation to a readable format
for LibTopoMap

3 Apply network placement of
groups of chares on nodes with
LibTopoMap
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TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible

Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint
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TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible
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TreeMatchLB - Intra-node placement

I Parallelized and distributed version of TreeMatchLB based on a
master-worker scheme with two levels of parallelization

OpenMP to extract the communication pattern of each node and distribute
the work
The Charm++ mechanisms for distribution

Master node

Node 1 Node 2 Node 3

: processing unit

1 : Parallel distribution

mi :

N the node set

, i ∈ N

2 : Local calculation

σ : →

3 : Results

σi = {2, 5, 1, 0, 3, 4}

Figure: Master-worker scheme used in our topology-aware load-balancer
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TreeMatchLB - Experiments

Experimental Conditions

I Two different architectures

PlaFRIM
– Intel Xeon Nehalem X5550

(2.66 GHz, 8 cores / node)

– 24 GB of 1.33GHz DDR3
RAM / node

– 8 MB of L3 cache / 4 cores

– Infiniband fat-tree network

Blue Waters
– Peak perf.: 13.34 Petaflops

– Cray XE6 nodes: AMD 6276
Interlagos processors (32 cores
/ node)

– 64 GB of main memory / node

– Cray Gemini 3D-Torus

I Benchmarks and applications
CommBench: benchmark simulating irregular communications
ChaNGa: large-scale cosmological simulation
Ondes3D: simulator of three-dimensional seismical wave propagation
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TreeMatchLB - commBench

I Benchmark simulating irregular communications
I Scalability: 32K cores (256 XE6 nodes) on Blue Waters
I Up to 1M chares, i.e. 32 chares/core
I Native Charm++ load balancers do not work at such scale
I 16.6% of improvement compared to baseline on the largest case
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TreeMatchLB - commBench
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TreeMatchLB - ChaNGa

I Large-scale cosmological application designed to perform collisionless
N-body simulation

I Lambb use case designed for up to 1024 cores: 80M particles represented
a 70 Mpc3 (Megaparsec) volume. Computes the mass function of dark
matter halos.

I TreeMatchLB compared to
different load balancers

RefineLB: migrates chares from
overloaded cores to underloaded
cores to reach an average load
(few migrations)
GreedyLB: re-assign all the
chares by mapping the highest
loaded chare to the least loaded
core
MultistepLB: load balancing
based on predictions made from
previous timesteps
Orb3dLB: recursive bisection to
find a balanced state
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TreeMatchLB - ChaNGa

I PlaFRIM: 8, 16 and 32 nodes
64, 128 and 256 cores
512, 1024 and 2048 chares

I TreeMatchLB is better or on par with other strategies
I 600ms to compute the new chares placement while less than 50ms for the

other methods
I Benefits in term of performance counterbalance this additional cost
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TreeMatchLB - ChaNGa

I Blue Waters: 16 and 32 nodes
512 and 1024 cores
4096 and 8192 chares

I On 16 nodes, variation of the percentage of active particles (change load
imbalance)

I Equalize at worst the performance obtained with the best solution
I On 32 nodes, TreeMatchLB outperforms GreedyLB by 17%
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Conclusion

I Load-balancing algorithm taking into account the data locality
Application independent (communication-bound applications)
Based on LibTopoMap (inter-node) and TreeMatch (intra-node)
Distributed and hierarchical

I Outperforms by 17% the native load balancers on 32 Blue Waters nodes
and a real application

I Scales up to 1M processing entities

Future work
I Evaluate the impact of the routing policy
I Adaptive hierarchical approach: let TreeMatchLB chose the two levels of

hierarchy to balance

Acknowledgments
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Thank you for your attention!
ftessier@anl.gov



TreeMatchLB - Behavior faced with the initial placement

What is the sensitivity of TreeMatchLB to initial placement?

I Application (kNeighbor) for which the optimal placement is known
I Testbed: Intel Xeon Nehalem X5550 (8 cores)

Physical core numbering: 0, 2, 4, 6, 1, 3, 5, 7
I TreeMatchLB VS optimal placement VS default placement

The initial mapping may vary according to the core numbering
I No sensitivity of TreeMatchLB to initial placement
I Converge to the optimal placement
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