
Context Approach Experimental Validation Conclusion

Topology and affinity aware hierarchical and distributed
load-balancing in Charm++

Emmanuel Jeannot, Guillaume Mercier, François Tessier

Inria - IPB - LaBRI - University of Bordeaux - Argonne National Lab.

November 18, 2016

Context Approach Experimental Validation Conclusion

Computing at Scale

I Large-scale parallel simulations: climate, heart modelling, cosmology, etc.
I Increasing number of cores on supercomputers

The more parallelization, the bigger impact of load imbalance
Applications need to communicate even more

I Complex topologies: interconnection networks, memory hierarchy (NUMA
effects)

 0.1

 1

 10

 0.01 0.1 1 10 100 1000 10000

B
a
n

d
w

id
th

 i
n

 G
B

p
s

Message size (in KB)

Bandwidth according to transmitted bytes
Intel Xeon Nehalem 5500 - IB Network

Inter-nodes
RAM shared

L3 shared

What about combining CPU load-balancing and data locality to optimize
performance of large-scale applications?

Context Approach Experimental Validation Conclusion

Charm++ and Load-balancing

I Parallel object-oriented programming language based on C++
I Fine-grained paradigm: cooperating objects called chares
I Plugable load balancing algorithms at launch time
I Load balancers able to natively migrate chares
I Adaptive runtime system supplying chares and cores statistics

std::vector<ProcInfo> procs

ProcArray → getAverageLoad()
resetTotalLoad()

ProcInfo
getTotalLoad()
getOverhead()
setTotalLoad()
isAvailable()

std::vector<Vertex> vertices

ObjGraph → convertDecisions()

Vertex
getVertexId()
getVertexLoad()
getCurrentPe()
getNewPe()
setNewPe()
isMigratable()

Edge
getNeighborId()
getNumBytes()
getNumMsg()

std::vector<Edge> sendToList
std::vector<Edge> recvFromList

Figure: Charm++ data structures

Context Approach Experimental Validation Conclusion

The TreeMatch Algorithm

I Algorithm and environment to compute processing entities placement
based on their affinities and NUMA topology

I Requires tree topology, based on a qualitative approach
I Input:

The affinity pattern of the application
A model (tree) of the underlying architecture (qualitative approach)

I Output:
A processes permutation σ such that σi is the core number on which we
have to bind the processing entity i

I Goal:
Minimize the sum of the communications between processes weighted by
the number of hops (minDistComm(σ))

I Combinatorial complexity with optimality to 128 processing entities then
heuristic for larger input

1: Affinity

2: Topology

3: Objective function

minDistComm(σ)

Placement

σ =(0,3,1,4,2,5)

Context Approach Experimental Validation Conclusion

Outline

1 Context

2 Approach

3 Experimental Validation

4 Conclusion

Context Approach Experimental Validation Conclusion

Outline

1 Context

2 Approach

3 Experimental Validation

4 Conclusion

Context Approach Experimental Validation Conclusion

TreeMatchLB

I Load balancing algorithm for communication-bound applications
Improve data locality dynamically (temporality)
CPU load-balancing based on refinement

I Hierarchical and distributed algorithm
Reorders groups of chares on nodes (LibTopoMap)
Reorders chares inside each node: TreeMatch with constraints
Each node in parallel

Cores

Memory

0 2 1 3 0 2 1 3

Groups of chares assigned on nodes

Nodes

LibTopoMap

Network (tree, torus, etc)
Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint

Context Approach Experimental Validation Conclusion

TreeMatchLB - Inter-node placement

I TreeMatch works only on tree topologies
I LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network

I Algorithm steps
1 Simple load refinement by

swapping chares
2 Convert the batch scheduler

allocation to a readable format
for LibTopoMap

3 Apply network placement of
groups of chares on nodes with
LibTopoMap

Cores

Memory

0 2 1 3 0 2 1 3

Groups of chares assigned on nodes

Nodes

LibTopoMap

Network (tree, torus, etc)

Context Approach Experimental Validation Conclusion

TreeMatchLB - Inter-node placement

I TreeMatch works only on tree topologies
I LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network

I Algorithm steps
1 Simple load refinement by

swapping chares
2 Convert the batch scheduler

allocation to a readable format
for LibTopoMap

3 Apply network placement of
groups of chares on nodes with
LibTopoMap

Node

Node

Cray Gemini
Router

z

y

x

Context Approach Experimental Validation Conclusion

TreeMatchLB - Inter-node placement

I TreeMatch works only on tree topologies
I LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network

I Algorithm steps
1 Simple load refinement by

swapping chares
2 Convert the batch scheduler

allocation to a readable format
for LibTopoMap

3 Apply network placement of
groups of chares on nodes with
LibTopoMap

Context Approach Experimental Validation Conclusion

TreeMatchLB - Inter-node placement

I TreeMatch works only on tree topologies
I LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network

I Algorithm steps
1 Simple load refinement by

swapping chares
2 Convert the batch scheduler

allocation to a readable format
for LibTopoMap

3 Apply network placement of
groups of chares on nodes with
LibTopoMap

Context Approach Experimental Validation Conclusion

TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible

Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint

Context Approach Experimental Validation Conclusion

TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible

Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint

Context Approach Experimental Validation Conclusion

TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible

Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint

Context Approach Experimental Validation Conclusion

TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible

Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint

Context Approach Experimental Validation Conclusion

TreeMatchLB - Intra-node placement

I Intra-node placement based on the TreeMatch algorithm
Trade-off between CPU load and affinity
Oversubscribing (more chares than processing units)

I Algorithm steps, for each node
1 Extract each node communication

pattern
2 Extend the node topology

• New level with arity = #chares
#proc

3 Apply chares placement computed with
TreeMatch

4 Refinement: move chares to the least
loaded core from cores as close as
possible

Node

Memory

Cores3120

CPU Load

Context Approach Experimental Validation Conclusion

TreeMatchLB - Intra-node placement

I Parallelized and distributed version of TreeMatchLB based on a
master-worker scheme with two levels of parallelization

OpenMP to extract the communication pattern of each node and distribute
the work
The Charm++ mechanisms for distribution

Master node

Node 1 Node 2 Node 3

: processing unit

1 : Parallel distribution

mi :

N the node set

, i ∈ N

2 : Local calculation

σ : →

3 : Results

σi = {2, 5, 1, 0, 3, 4}

Figure: Master-worker scheme used in our topology-aware load-balancer

Context Approach Experimental Validation Conclusion

Outline

1 Context

2 Approach

3 Experimental Validation

4 Conclusion

Context Approach Experimental Validation Conclusion

TreeMatchLB - Experiments

Experimental Conditions

I Two different architectures

PlaFRIM
– Intel Xeon Nehalem X5550

(2.66 GHz, 8 cores / node)

– 24 GB of 1.33GHz DDR3
RAM / node

– 8 MB of L3 cache / 4 cores

– Infiniband fat-tree network

Blue Waters
– Peak perf.: 13.34 Petaflops

– Cray XE6 nodes: AMD 6276
Interlagos processors (32 cores
/ node)

– 64 GB of main memory / node

– Cray Gemini 3D-Torus

I Benchmarks and applications
CommBench: benchmark simulating irregular communications
ChaNGa: large-scale cosmological simulation
Ondes3D: simulator of three-dimensional seismical wave propagation

Context Approach Experimental Validation Conclusion

TreeMatchLB - commBench

I Benchmark simulating irregular communications
I Scalability: 32K cores (256 XE6 nodes) on Blue Waters
I Up to 1M chares, i.e. 32 chares/core
I Native Charm++ load balancers do not work at such scale
I 16.6% of improvement compared to baseline on the largest case

10 20 30 40 50 60

10
20

30
40

50
60

Chares comm matrix − CommBench − 1 BW node

Sender rank

R
ec

ei
ve

r
ra

nk

0
10

00
20

00
30

00
40

00
50

00
60

00

Context Approach Experimental Validation Conclusion

TreeMatchLB - commBench

I Benchmark simulating irregular communications
I Scalability: 32K cores (256 XE6 nodes) on Blue Waters
I Up to 1M chares, i.e. 32 chares/core
I Native Charm++ load balancers do not work at such scale
I 16.6% of improvement compared to baseline on the largest case

 0

 1000

 2000

 3000

 4000

 5000

 6000

 8192 16384 32768

A
ve

ra
g
e
 w

a
ll

ti
m

e
 (

s)

Number of cores

Execution Wall time
32 chares per cores - 1MB message size

Baseline
TreeMatchLB

Context Approach Experimental Validation Conclusion

TreeMatchLB - ChaNGa

I Large-scale cosmological application designed to perform collisionless
N-body simulation

I Lambb use case designed for up to 1024 cores: 80M particles represented
a 70 Mpc3 (Megaparsec) volume. Computes the mass function of dark
matter halos.

I TreeMatchLB compared to
different load balancers

RefineLB: migrates chares from
overloaded cores to underloaded
cores to reach an average load
(few migrations)
GreedyLB: re-assign all the
chares by mapping the highest
loaded chare to the least loaded
core
MultistepLB: load balancing
based on predictions made from
previous timesteps
Orb3dLB: recursive bisection to
find a balanced state

Context Approach Experimental Validation Conclusion

TreeMatchLB - ChaNGa

I PlaFRIM: 8, 16 and 32 nodes
64, 128 and 256 cores
512, 1024 and 2048 chares

I TreeMatchLB is better or on par with other strategies
I 600ms to compute the new chares placement while less than 50ms for the

other methods
I Benefits in term of performance counterbalance this additional cost

 0

 500

 1000

 1500

 2000

 2500

 3000

64 128 256

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

Number of cores

ChaNGa walltime for the lambb use-case on PlaFRIM
 when varying the number of processes

NoLB
TreeMatchLB

RefineLB

GreedyLB
MultistepLB_notopo

Orb3dLB_notopo

Context Approach Experimental Validation Conclusion

TreeMatchLB - ChaNGa

I Blue Waters: 16 and 32 nodes
512 and 1024 cores
4096 and 8192 chares

I On 16 nodes, variation of the percentage of active particles (change load
imbalance)

I Equalize at worst the performance obtained with the best solution
I On 32 nodes, TreeMatchLB outperforms GreedyLB by 17%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

10 25 50

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

Percentage of active particles (imbalance)

ChaNGa walltime for the lambb use-case on 16 XE6 nodes (512 cores)
of Blue Waters when varying the load imbalance

NoLB
TreeMatchLB

RefineLB

GreedyLB
MultistepLB_notopo

Orb3dLB_notopo

Context Approach Experimental Validation Conclusion

TreeMatchLB - ChaNGa

I Blue Waters: 16 and 32 nodes
512 and 1024 cores
4096 and 8192 chares

I On 16 nodes, variation of the percentage of active particles (change load
imbalance)

I Equalize at worst the performance obtained with the best solution
I On 32 nodes, TreeMatchLB outperforms GreedyLB by 17%

 0

 500

 1000

 1500

 2000

 2500

 3000

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

ChaNGa walltime for the lambb use-case
on 32 XE6 nodes (1024 cores) of Blue Waters

NoLB
TreeMatchLB

RefineLB
GreedyLB

MultistepLB_notopo
Orb3dLB_notopo

Context Approach Experimental Validation Conclusion

Outline

1 Context

2 Approach

3 Experimental Validation

4 Conclusion

Context Approach Experimental Validation Conclusion

Conclusion

I Load-balancing algorithm taking into account the data locality
Application independent (communication-bound applications)
Based on LibTopoMap (inter-node) and TreeMatch (intra-node)
Distributed and hierarchical

I Outperforms by 17% the native load balancers on 32 Blue Waters nodes
and a real application

I Scales up to 1M processing entities

Future work
I Evaluate the impact of the routing policy
I Adaptive hierarchical approach: let TreeMatchLB chose the two levels of

hierarchy to balance

Acknowledgments
I JLESC for allocations on Blue Waters
I PPL for the support

Context Approach Experimental Validation Conclusion

Conclusion

Thank you for your attention!
ftessier@anl.gov

TreeMatchLB - Behavior faced with the initial placement

What is the sensitivity of TreeMatchLB to initial placement?

I Application (kNeighbor) for which the optimal placement is known
I Testbed: Intel Xeon Nehalem X5550 (8 cores)

Physical core numbering: 0, 2, 4, 6, 1, 3, 5, 7
I TreeMatchLB VS optimal placement VS default placement

The initial mapping may vary according to the core numbering
I No sensitivity of TreeMatchLB to initial placement
I Converge to the optimal placement

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16

A
v
e
ra

g
e
 t

im
e
 f

o
r

e
a
ch

 7
-k

N
e
ig

h
b

o
r

it
e
ra

ti
o
n
 (

in
 m

s)

Number of chares by core

Execution time versus chares by core

Baseline Round Robin
Baseline Packed

TMLB_TreeBased (RR / Packed)

	Context
	Approach
	Experimental Validation
	Conclusion

