Topology and affinity aware hierarchical and distributed
load-balancing in Charm++

Emmanuel Jeannot, Guillaume Mercier, Francois Tessier

Inria - IPB - LaBRI - University of Bordeaux - Argonne National Lab.

November 18, 2016

r . o,/
I I universite
V277 5 - “BORDEAUX Argonne &

Context
o

Computing at Scale

» Large-scale parallel simulations: climate, heart modelling, cosmology, etc.
» Increasing number of cores on supercomputers

m The more parallelization, the bigger impact of load imbalance

m Applications need to communicate even more
» Complex topologies: interconnection networks, memory hierarchy (NUMA

effects)

Bandwidth according to transmitted bytes
Intel Xeon Nehalem 5500 - IB Network

10

w

Q

o

[G]

£

= 1E

k=l

3

i Inter-nodes -

© RAM shared -+

@ L3 shared —e—
0.1 I I T T

0.01 0.1 1 10 100 1000 10000
Message size (in KB)

What about combining CPU load-balancing and data locality to optimize

performance of large-scale applications?

Context
(]

Charm++ and Load-balancing

>
>
>
>
>

Parallel object-oriented programming language based on C++
Fine-grained paradigm: cooperating objects called chares
Plugable load balancing algorithms at launch time

Load balancers able to natively migrate chares

Adaptive runtime system supplying chares and cores statistics

etAverageload . o
procarsy (o) Obicanh

std::vector<Proclnfo> procs std::vector<Vertex> vertices

(NI T T [TTTTIITTIT]

Vertex

Procinfo getVertexld()
getTotalLoad() getVertexLoad()
getOverhead() getCurrentPe()
setTotalLoad() getNewPe()
isAvailable() setNewPe()

isMigratable()

Edge
getNeighborld()
getNumBytes()
getNumMsg()

std::vector<Edge> sendToList
std::vector<Edge> recvFromList

Figure: Charm++ data structures

Context
[Je]

The TreeMatch Algorithm

» Algorithm and environment to compute processing entities placement
based on their affinities and NUMA topology
> Requires tree topology, based on a qualitative approach
> Input:
m The affinity pattern of the application
m A model (tree) of the underlying architecture (qualitative approach)
> Output:
m A processes permutation o such that o; is the core number on which we
have to bind the processing entity i
> Goal:
m Minimize the sum of the communications between processes weighted by
the number of hops (min DistComm(c))

» Combinatorial complexity with optimality to 128 processing entities then
heuristic for larger input

1: Affinity
\3: Objective function Placement
min DistComm(o) —| 0=(0314.25)
2: Topology

L &n]

Context
oe

Outline

@ Context

© Approach

© Experimental Validation

@ Conclusion

Approach
Outline

© Approach

Approach
[]

TreeMatchLB

» Load balancing algorithm for communication-bound applications

m Improve data locality dynamically (temporality)
m CPU load-balancing based on refinement

» Hierarchical and distributed algorithm
m Reorders groups of chares on nodes (LibTopoMap)
m Reorders chares inside each node: TreeMatch with constraints
m Each node in parallel

Network (tree, torus, etc)

LibTopoMap

-- Cores

TreeMatchConstraints

O Leaves of the fake topology
@ Leaves with constraint

Groups of chares assigned on nodes

Approach
[]

TreeMatchLB - Inter-node placement

» TreeMatch works only on tree topologies

» LibTopoMap: library able to place processes on any network topology

Network (tree, torus, etc)

Groups of chares assigned on nodes

Approach
[]
TreeMatchLB - Inter-node placement

» TreeMatch works only on tree topologies

» LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini —
network m’

> Algorithm steps

Cray Gemini -

Approach
[]
TreeMatchLB - Inter-node placement

» TreeMatch works only on tree topologies

» LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network
> Algorithm steps

@ Simple load refinement by
swapping chares

Approach
[]

TreeMatchLB - Inter-node placement

» TreeMatch works only on tree topologies

» LibTopoMap: library able to place processes on any network topology

Example: 3D-Torus Cray Gemini
network

> Algorithm steps [

@ Simple load refinement by
swapping chares

® Convert the batch scheduler
allocation to a readable format

for LibTopoMap -Ej
© Apply network placement of
groups of chares on nodes with
LibTopoMap
1

il

]

Approach
L]

TreeMatchLB - Intra-node placement

» Intra-node placement based on the TreeMatch algorithm

m Trade-off between CPU load and affinity
m Oversubscribing (more chares than processing units)

-- Cores

TreeMatchConstraints

O Leaves of the fake topology
@ Leaves with constraint

Approach
L]

TreeMatchLB - Intra-node placement

» Intra-node placement based on the TreeMatch algorithm

m Trade-off between CPU load and affinity
m Oversubscribing (more chares than processing units)

———————————— Node
» Algorithm steps, for each node
@ Extract each node communication
pattern. . @@ Memory
-- Cores

TreeMatchConstraints

O Leaves of the fake topology
@ Leaves with constraint

Approach
L]

TreeMatchLB - Intra-node placement

» Intra-node placement based on the TreeMatch algorithm

m Trade-off between CPU load and affinity
m Oversubscribing (more chares than processing units)

» Algorithm steps, for each node

@ Extract each node communication
pattern. . @@ Memory
® Extend the node topology

e New level with arity = %;::fgf

-- Cores

TreeMatchConstraints
[O Leaves of the fake topology]

@ Leaves with constraint

Approach
L]

TreeMatchLB - Intra-node placement

» Intra-node placement based on the TreeMatch algorithm

m Trade-off between CPU load and affinity
m Oversubscribing (more chares than processing units)

———————————— Node
» Algorithm steps, for each node
@ Extract each node communication
pattern. . @@ Memory
® Extend the node topology
e New level with arity = %;::fgf

. -- Cores

© Apply chares placement computed with

TreeMatch

TreeMatchConstraints
[O Leaves of the fake topology]

@ Leaves with constraint

Approach
L]

TreeMatchLB - Intra-node placement

» Intra-node placement based on the TreeMatch algorithm

m Trade-off between CPU load and affinity
m Oversubscribing (more chares than processing units)

» Algorithm steps, for each node
@ Extract each node communication
pattern
® Extend the node topology

e New level with arity = %;::fgf

© Apply chares placement computed with
TreeMatch

O Refinement: move chares to the least
loaded core from cores as close as

possible D D ET—E]

CPU Load

Approach
[]

TreeMatchLB - Intra-node placement

» Parallelized and distributed version of TreeMatchLB based on a
master-worker scheme with two levels of parallelization

m OpenMP to extract the communication pattern of each node and distribute
the work
m The Charm++ mechanisms for distribution

Master node
3 : Results D : processing unit

[T T 1]
¢
1 : Parallel distribution
i ,ieN
2 : Local calculation e
HEEREEEEN

RGO 1T

Node 1 Node 2 Node 3

Figure: Master-worker scheme used in our topology-aware load-balancer

Experimental Validation

Outline

© Experimental Validation

Experimental Validation
[]

TreeMatchlLB - Experiments

Experimental Conditions

» Two different architectures

PlaFRIM Blue Waters
— Intel Xeon Nehalem X5550 — Peak perf.: 13.34 Petaflops
(2.66 GHz, 8 cores / node) — Cray XE6 nodes: AMD 6276
— 24 GB of 1.33GHz DDR3 Interlagos processors (32 cores
RAM / node / node)
— 8 MB of L3 cache / 4 cores — 64 GB of main memory / node
— Infiniband fat-tree network — Cray Gemini 3D-Torus

» Benchmarks and applications
m CommBench: benchmark simulating irregular communications
m ChaNGa: large-scale cosmological simulation
m Ondes3D: simulator of three-dimensional seismical wave propagation

Experimental Validation
L]

TreeMatchLB - commBench

» Benchmark simulating irregular communications

Chares comm matrix - CommBench - 1 BW node

6000

5000

4000

40
|

30
|
3000

Receiver rank

20
|
2000
|

10
|

1000
|

T T T T T T
10 20 30 40 50 60 ©

Sender rank

Experimental Validation
L]

TreeMatchLB - commBench

>
>
>
>
>

Benchmark simulating irregular communications

Scalability: 32K cores (256 XE6 nodes) on Blue Waters

Up to 1M chares, i.e. 32 chares/core

Native Charm++ load balancers do not work at such scale
16.6% of improvement compared to baseline on the largest case

Execution Wall time
32 chares per cores - 1MB message size

6000 .
@ 5000 |- TreeMatchLB /p-
[
£ 4000 8
=
T 3000 [.
()
g 2000 i
H
<1000 |- 8
0 1
8192 16384 32768

Number of cores

Experimental Validation
[]

TreeMatchLB - ChaNGa

» Large-scale cosmological application designed to perform collisionless
N-body simulation

» Lambb use case designed for up to 1024 cores: 80M particles represented
a 70 Mpc® (Megaparsec) volume. Computes the mass function of dark
matter halos.

» TreeMatchLB compared to
different load balancers

m RefinelLB: migrates chares from
overloaded cores to underloaded
cores to reach an average load
(few migrations)

m GreedylLB: re-assign all the
chares by mapping the highest
loaded chare to the least loaded
core

m MultistepLB: load balancing
based on predictions made from
previous timesteps

m Orb3dLB: recursive bisection to
find a balanced state

Experimental Validation
o

TreeMatchLB - ChaNGa

» PlaFRIM: 8, 16 and 32 nodes
m 64, 128 and 256 cores
m 512, 1024 and 2048 chares

» TreeMatchLB is better or on par with other strategies

» 600ms to compute the new chares placement while less than 50ms for the
other methods

» Benefits in term of performance counterbalance this additional cost

ChaNGa walltime for the lambb use-case on PlaFRIM
when varying the number of processes

3000 | NolLB === GreedylB C—31 i
TreeMatchLB === MultistepLB_notopo ===
RefinelB Orb3dLB notopo
2500

2000

1500

1000

Execution time (in seconds)

500

128
Number of cores

Experimental Validation
[]

TreeMatchLB - ChaNGa

» Blue Waters: 16 and 32 nodes
m 512 and 1024 cores
m 4096 and 8192 chares

» On 16 nodes, variation of the percentage of active particles (change load
imbalance)
» Equalize at worst the performance obtained with the best solution

ChaNGa walltime for the lambb use-case on 16 XE6 nodes (512 cores)
of Blue Waters when varying the load imbalance

4500
4000
3500
3000
2500
2000
1500
1000 -

NolLB =3 GreedylB /—3 7
TreeMatchLB === MultistepLB_notopo ===
RefinelLB Orb3dLB notopo

Execution time (in seconds)

500 -

10 25 50
Percentage of active particles (imbalance)

Experimental Validation
[]

TreeMatchLB - ChaNGa

» Blue Waters: 16 and 32 nodes
m 512 and 1024 cores
m 4096 and 8192 chares

» On 16 nodes, variation of the percentage of active particles (change load
imbalance)

» Equalize at worst the performance obtained with the best solution

» On 32 nodes, TreeMatchLB outperforms GreedyLB by 17%

ChaNGa walltime for the lambb use-case
on 32 XE6 nodes (1024 cores) of Blue Waters

3000
NolLB ===
TreeMatchLB
L RefinelLB E=mm | |
_ 2500 GreedylB 1
K4 MultistepLB_notopo B
s Orb3dLB notopo E—1
o 2000 [b
b
£
1) |- 4
£ 1500
=]
c
2
5 1000 [B
o
13
X
w
500 B

Conclusion

Outline

@ Conclusion

Conclusion
[]

Conclusion

» Load-balancing algorithm taking into account the data locality

m Application independent (communication-bound applications)
m Based on LibTopoMap (inter-node) and TreeMatch (intra-node)
m Distributed and hierarchical

» Outperforms by 17% the native load balancers on 32 Blue Waters nodes
and a real application

» Scales up to 1M processing entities

Future work
» Evaluate the impact of the routing policy

» Adaptive hierarchical approach: let TreeMatchLB chose the two levels of
hierarchy to balance

Acknowledgments
» JLESC for allocations on Blue Waters
» PPL for the support

Conclusion
[]

Conclusion

Thank you for your attention!

ftessier@anl.gov

TreeMatchLB - Behavior faced with the initial placement

at is the sensitivity of TreeMatchLB to initial placeme

» Application (kNeighbor) for which the optimal placement is known
> Testbed: Intel Xeon Nehalem X5550 (8 cores)
m Physical core numbering: 0, 2, 4,6, 1, 3,5, 7
» TreeMatchLB VS optimal placement VS default placement
m The initial mapping may vary according to the core numbering
» No sensitivity of TreeMatchLB to initial placement
» Converge to the optimal placement

Execution time versus chares by core

200 T T T
- Baseline Round Robin —+— |
2 180 H Baseline Packed —>¢
S TMLB_TreeBased (RR / Packed)
2 160 - B
X3 ¢
~ e
TE 140 q
S£
3C 120
v L o 4
k) % =
EE 100 - B
P 80 / N
j=
o
E 60 -~ 4
40 L L L
1 2 4 8 16

Number of chares by core

	Context
	Approach
	Experimental Validation
	Conclusion

