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Abstract— The Cori system at NERSC has two compute
partitions with different CPU architectures: a 2,004 node
Haswell partition and a 9,688 node KNL partition, which
ranked as the 5th most powerful and fastest supercomputer
on the November 2016 Top 500 list. The compute partitions
share a common storage configuration, and understanding the
IO performance gap between them is important, impacting
not only to NERSC/LBNL users and other national labs, but
also to the relevant hardware vendors and software developers.
In this paper, we have analyzed performance of single core
and single node IO comprehensively on the Haswell and KNL
partitions, and have discovered the major bottlenecks, which
include CPU frequencies and memory copy performance. We
have also extended our performance tests to multi-node IO
and revealed the IO cost difference caused by network latency,
buffer size, and communication cost. Overall, we have developed
a strong understanding of the IO gap between Haswell and KNL
nodes and the lessons learned from this exploration will guide
us in designing optimal IO solutions in many-core era.

I. INTRODUCTION

Cori [1], a Cray XC40 system, is an integrated system
with Intel Haswell and Xeon Phi Knights Landing (KNL)
processors that provides a flexible and heterogeneous com-
puting environment to users and enables efficient hybrid
programming for faster scientific discovery. Each KNL node
has 68 physical cores, each supporting 4 hyperthreads, for a
total of 272 threads per node and each Haswell node has 32
physical cores, each supporting 2 hyperthreads, for a total
64 of threads per node.

Optimizing applications for many-core architectures such
as KNL often involves significant effort to take full advantage
of the larger number of weaker cores, high-bandwidth on-
package memory, and wider vector units. NERSC’s NESAP
program [6] selected 20 scientific applications and focused
on optimizing the computation and communication aspects
of each for the Cori system, but we focus on I/O performance
in this work.

Figure 1 shows the configuration of the Lustre file system
shared by the KNL and Haswell partitions on Cori [2]. There
are 130 LNET routers that connect the compute nodes with
storage nodes, with all users randomly distributed among the
five metadata servers: 1 major server and 4 additional servers.
Each OSS controls one OST, and the OSTs are configured
with GridRAID, similar to RAID6 (8+2), but can restore
failure 3.5 times faster than traditional RAID6. Each OST
consists of 41 disks, and can deliver 240TB capacity. The
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Fig. 1. Cori IO System

Infiniband network connects the MDS, ADUs and OSSs to
the LNET routers on the system.

On the compute side, 2004 Haswell nodes share the 130
LNET servers with the 9688 KNL nodes. Thus, from the
storage point of view, there is no difference between the two
partitions and implies that any potential IO difference mainly
comes from the compute node architecture.

During our initial performance comparisons, we noted
various I/O performance discrepancies between the two
partitions. For example, in our 32 node HDF5 parallel IO
test, Haswell cores were 1.68X faster than KNL. In order
to understand this gap, we have started from the single
core case, and conducted comprehensive tests in different
scenarios, including multi-core/node cases:

• Single core test with buffer/sync/direct IO
• Scaling test with varying CPU frequencies
• Single core test with different MCDRAM modes
• Scaling test with multiple cores on a single node
• Inter/Intra node point to point tests
• Inter-nodes MPI collective and independent IO test
Through these tests and related data analysis, we are

able to understand the IO gap by isolating the different
software/hardware components. Section II focuses on IO
performance from a single core. Section III extends these
experiments to multi-core/node, while Section IV concludes
this paper and provide guidelines to efficiently perform IO
on the targeted architectures.

II. SINGLE CORE IO PERFORMANCE

A. Benchmark and Experimental Setup

For single core IO performance tests, we used the Unix
command dd. This command creates and fills a file according
to parameters, such as the block size per operation. For



example, dd if = input of = output, in which a POSIX
read is conducted first, then followed by a POSIX write.
This read/write is repeated a number of count times. Each
read/write operation is of size bs bytes. We used count =
1000 and bs = 1MB, which generates a 1GB file.

We also used a simple HDF5 benchmark written by
ourselves [3]. This HDF5 code performs a simple HDF5
write function call using MPI independent IO to write a 2D
array. The file produced as output is also 1 GB in size.

The first POSIX benchmark based on dd was chosen to
avoid as much as possible the impact of the HPC IO soft-
ware stack (MPI, HDF5, etc) and to highlight the hardware
difference between Haswell and KNL. With dd’s benchmark
as a baseline, the second HDF5 experiment was chosen as
comparison, and a practical indicator for typical application
performance.

These experiments were run on Cori and also confirmed
on the KNL partition on Theta, the new Cray XC40 super-
computer at Argonne National Laboratory [5].

B. IO Path on Cori

In our first test we vary the CPU frequency and measure
IO performance on both Haswell and KNL cores. As shown
in Figure 3, we requested different CPU scaling options on
both partitions with SLURM, e.g., srun –cpu-freq=1300000,
and performed a simple Unix dd test with 1 MB block size
and 10000 count. This dd test first generates a 1 MB buffer
full of zeros in memory then writes onto disk repeatedly,
producing a 10GB file.

IO performance decreases as the CPU frequencies de-
crease, but KNL IO performance is much slower than
Haswell, even when their CPU frequencies are set to the
same value (e.g. 1.4GHz, 1.3GHz, and 1.2GHz). We contin-
ued to profile the CPU statistics with perf, and the results
are explored further in section II-C. We also noted that the
workload in this test is relatively small, and can fit in the page
cache very well, which means minimal disk IO is involved
in this test and indicates memory and page cache could
be factors that cause the IO difference between Haswell
and KNL. In order to understand the page cache impact,
we conducted comprehensive IO benchmarking based on
different IO modes and different memory modes.

Figure 2 shows the different IO paths on KNL cores for
different MCDRAM modes and different IO modes (e.g.,
buffered IO or synchronous IO). As mentioned before, the
MCDRAM on KNL can be configured in multiple modes. In
cache mode, the MCDRAM will be used as a direct mapped
last level cache for DRAM; in flat mode, the MCDRAM
will be configured as additional addressable main memory
exposed as separate NUMA domain. As shown in Figure 2,
the location of the user space memory on KNL node depends
on the configuration of MCDRAM:

• Cache Mode: user space is in dram
• Flat Mode with ‘numactl -m 1‘: user space is in

MCDRAM
• Flat Mode with ‘numactl -p 1‘: user space is allocated

in MCDRAM preferably
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Fig. 2. IO Path on KNL, 1/2/3 is buffered/synchronous/direct IO; User
data is located in either MCDRAM or DRAM and depends on MCDRAM
mode and NUMA configuration

The IO path is different under different IO modes such as
buffered, synchronous, and direct IO. In this paper, when
referring IO path, we refer to the dominant costly IO opera-
tion in the workflow. For example, the IO path of buffered IO
(e.g., write) with MCDRAM in cache mode includes a costly
synchronized memcpy from user space to kernel space, and
less costly asynchronized flush from kernel space to file
system (assuming the buffer is not full). Therefore, for the
three IO modes, we have their dominant IO cost path as:

• Buffered IO: memcpy from user space to kernel space
• Synchronous IO: memcpy from user space to kernel

space, and flush from kernel space to disk
• Direct IO: flush from user space to disk

C. Buffered IO

Generally, applications benefit from page buffering during
IO. For example, during writes data is written to page buffers,
which resides in kernel space in memory, and then the page
buffers are periodically flushed to disk asynchronously. The
write function call immediately returns once the data is
in page buffer, without waiting for the longer disk IO to
complete.

As explained in the previous section, we varied the CPU
frequencies on the Haswell core from 2.301GHz (default,
turbo mode) to 2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, 1.6, 1.5,
1.4 and 1.3GHz. And for the KNL core, we varied from
1.401 (default, turbo mode) to 1.4, 1.3, 1.2, 1.1, 1.0GHz.
These frequencies are determined by the core’s avail-
able scaling options, i.e., scaling available frequencies
in /sys/devices/system/cpu/cpu0/cpufreq/. We should
also note that there is no guarantee for having a constant cpu
frequency. Setting the − − cpu − freq in SLURM is only
putting a limit on the maximum cpu frequencies. The actual
cpu frequency in each test varied between a range, and only
an averaged frequency number over this period is reported
in the perf profiling result. As shown in Figure 3, we found
that the IO bandwidth ratio of KNL to Haswell is 29%(turbo
mode) and 43% (Non-turbo mode). Similar testing was also
conducted using the HDF5 benchmark, Figure 4.

On both Haswell and KNL cores the IO bandwidth scaled
proportionally with CPU frequencies. We run linear regres-
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Fig. 3. Buffered IO Performance with Varying CPU Frequencies, dd

Fig. 4. Buffered IO Performance with Varying CPU Frequencies, HDF5

sion analysis and plot the relationship between IO and CPU
frequencies in Figures 5, 6, 7, 8.

Turbo mode typically involves larger variance of CPU
frequencies, thus, we see a worse fitting in those plots. The
regression results for non-turbo mode are summarized in
Table I. The r2 value of 0.95 indicates a strong correlation
between KNL core CPU frequencies and its IO bandwidth,
while the relationship is less significant on Haswell cores.
The non-zero intercepts, 286MB/s on Haswell and 41MB/s
on KNL, indicate that when the CPU is idle, the IO band-
width is not zero, which probably is caused by page buffer IO
or DMA. Overall, when all the data fits into page buffers, we
have observed a strong correlation between CPU frequencies
and IO bandwidth. When page buffering is disabled and real
storage IO is involved, we expect that the impact from CPU

TABLE I
REGRESSION RESULTS (NON TURBO MODE)

Haswell KNL
r2 0.79 0.95

intercept 286.11 41.28

Fig. 5. Haswell IO Bandwidth vs. CPU Frequencies, Page Cache On

Fig. 6. Haswell IO Bandwidth vs. CPU Frequencies (with Turbo Mode),
Page Cache On

Fig. 7. KNL IO Bandwidth vs. CPU Frequencies, Page Cache On
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Fig. 8. KNL IO Bandwidth vs. CPU Frequencies (with Turbo Mode), Page
Cache On

Fig. 9. IO Bandwidth vs. CPU Frequencies (with Turbo Mode), Syn-
chronous IO

architecture will diminish, which we explore in the following
section.

D. Synchronous IO

We then turned on the ‘dsync’ option for dd to force data
to be flushed to disk during each write. By forcing the data to
be flushed to disk, we observed a dramatic bandwidth drop,
with a larger variance (see the error bar), in Figure 9. The
IO bandwidth gap between KNL and Haswell, however, is
reduced, i.e., KNL Bandwidth

Haswell Bandwidth = 67% compared to 43%
for buffered IO, as shown earlier in Section II-C.

This means the CPU impact diminishes when disk IO is
actually involved, and the major IO path is now dominated
by storage performance (i.e. with Lustre). We confirmed this
through the regression analysis: in Figure 10 and 11, we
can see that r2 is only 0.03 on Haswell cores and 0.16 on
KNL cores. This lower r2 means there is merely a correlation
between CPU frequencies and IO bandwidth at this point.

On KNL, we also set the MCDRAM to different modes,
i.e., L3 cache and addressable memory space, and expected
better performance in latter case, as illustrated in the IO path

Fig. 10. Haswell IO Bandwidth vs. CPU Frequencies, Synchronous IO

Fig. 11. KNL IO Bandwidth vs. CPU Frequencies, Synchronous IO

in Figure 2. Using MCDRAM as the only (m=1) or the first
priority (p=1) addressable memory space should offer faster
memory allocation and memory copy. However, we observed
slight performance degradation, as shown in Table II, which
is probably caused cross-memory (DRAM and MCDRAM)
copy and cross-memory buffer management. To bypass this
memory overhead, we continued with direct IO, where page
buffer copies are skipped, and a write function call will
directly dump data from user space to disk.

E. Direct IO

The IO bandwidth ratio of KNL to haswell at the same
CPU frequencies, is now increased to 96%. This shows a
very close IO performance between the two type of nodes.

TABLE II
BANDWIDTH OF SYNC IO

Haswell Knl-dram Knl-mcdram
stdev 0.55 0.46 0.22

average 45.21 31.23 30.20
median 45.35 31.47 31.13
knl bw

haswell bw
69% 67%

4



The comparison isolated the CPU frequencies by setting the
same frequencies, and avoided the memory copy cost by by-
passing the kernel space page buffer. This test demonstrated
a fair performance comparison, which minimized IO gap and
revealed the previous unknown issue.

TABLE III
BANDWIDTH OF DIRECT IO

Haswell KNL-DRAM KNL-MCDRAM
stdev 1.21 1.02 1.15

average 48.89 43.83 46.78
median 49.60 43.93 46.40

KNL bw
Haswell bw

90% 96%

F. Summary of Single Core Tests

In this single core test section, we have walked through
different IO modes, e.g., buffered/synchronous/direct, and
revealed the IO difference between Haswell and KNL cores.
In summary, on single core performance, page buffer helps
a lot in many cases, e.g., write, and multiple read. But we
also found that KNL IO is closer to Haswell when less
software layers are involved. With the aid of page buffering,
both chips’ IO performance are scaling proportionally with
their CPU frequencies separately when IO can fit into the
buffer. In summary, we plot the the performance ratio under
different IO modes in Figure 12.

Fig. 12. Performance Ratio between KNL and Haswell with different IO
mode

We could see clearly that the KNL is closer to Haswell
on the right side of the plot. The KNL performs badly on
the left side. (Except the left most ’Buffered IO(Turbo)’,
which is measured at turbo cpu frequencies, other test are
compared at same cpu frequencies. For example, the third
bar is the synchronous IO performance ratio between KNL
and Haswell at same cpu frequencies, i.e., 1.2, 1.3, 1.4 GHz).
Note that the absolute bandwidth dropped from 1000
MB/s to 40 MB/s from left to right. A different view
is shown in Figure 13 what we learned from this probably
indicates that buffer management is slower on KNL, which
will be our future work to investigate. We also found that this

lesson is meaningful as we could potentially leverage the less
costly direct IO during read operation (so far we only test
the write operation), where the data can be moved directly
from disk to user buffer, while bypassing the kernel buffer.
We verified this in the next section.

Fig. 13. Performance Ratio between KNL and Haswell with different IO
mode, (a different view)

III. MULTI-CORE/MULTI-NODE PERFORMANCE

Having a better understanding of single-core IO perfor-
mance, in this section, we explore multi-core/node scenarios.
Certainly, leveraging many cores on the KNL partition is the
way to reach higher bandwidth. We started with a single-
node IOR test and scaled from 1 to 68 processes. We also
conducted comparisons of point-to-point communication and
collective IO performance between Haswell and KNL cores.

A. Single-Node IOR Test

We have enabled synchronous and direct IO separately
in this IOR test. This test is file per process, using POSIX
API. The IO is 256 segments with a 4MB block and transfer
size, so each process is writing 1GB data. In the case of 68
processes, it is 68 files and 1G per file.

Fig. 14. IOR File Per Process Read on KNL, Weak Scaling on Single
Node

From Figure 14 and 15, Overall, the maximum single node
aggregated read bandwidth on KNL is 2.78G, and 3.42G
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Fig. 15. IOR File Per Process Read on Haswell, Weak Scaling on Single
Node

Fig. 16. IOR File Per Process Write on KNL, Weak Scaling on Single
Node

on Haswell, both with direct IO. Their performance ratio is
81.2% in direct IO, 70.3% in synchronous IO and 79.6% in
buffered IO. Specifically in this file per process IOR read
test, KNL achieved maximum bandwidth with 48, i.e., 70%
of a single node’s total cores, by writing 48 1G files toally
with direct IO. Haswell got its maximum bandwidth at 32
processes, 100% of a single node cores, by writing 32 1GB
file totally in direct IO. In both cases, direct IO starts to
outperform buffered and synchronous I/O at certain number
of processes (or certain size of I/O), e.g., 32 processes, 32
GB on KNL and 16 processes, 16 GB on Haswell. Direct IO
skips read-ahead, while buffered/synchronous IO leverages
that, which is probably the reason that at certain point, read-
ahead benefit diminishes.

In Figure 16 and 17, we have found that page buffering
certainly helps during the write. But KNL is scalable to 68
cores with direct IO, and outperforms Haswell’s maximum
write bandwidth.

B. Point-to-Point Communication

To add some context to the I/O results, we carried out
experiments showing the bandwidth achieved for MPI point-
to-point communication between nodes and within a node.
We targeted two supercomputers at Argonne National Labo-

Fig. 17. IOR File Per Process Write on Haswell, Weak Scaling on Single
Node

ratory: Theta and Cooley. Theta, like Cori, is a Cray XC40
supercomputer with more than three thousand Intel KNL
7250 nodes, connected through an Aries dragonfly network
with a theoretical bandwidth of 14 GBps between two nodes
if these nodes are in the same cabinet. Cooley is an analysis
and visualization cluster of 126 nodes, each hosting two 2.4
GHz Intel Haswell E5-2620 processors (with 6 cores each).
On Cooley, nodes are interconnected with a CLOS network
and a single Infiniband FDR link between two nodes can
achieve up to 7 GBps.

1) Bandwidth: To evaluate point-to-point communication
performance on both KNL-based and Haswell-based ar-
chitectures, we ran a Ping-Pong test from the Intel MPI
Benchmarks suite (IMB) [4] that performs a simple transfer
from one rank to another. The data transfer size varies
as a power of two between 0 and 64 MB. For these
experiments, we mapped our ranks on two different nodes
(inter-node communication) and on the same node (intra-
node communication). For this second case, we forced the
process binding on both platforms to assign processes on two
different processors sharing the main memory. It has to be
noted that we saw no impact when allocating memory in the
HBM on KNL nodes.

Figure 18 presents these results. First, we remark that
contrary to Cooley the peak network bandwidth obtained on
Theta is far from the theoretical peak performance. Second,
on both architectures, we notice a large performance decrease
for intra-node communication beyond a certain amount of
data sent. Several factors can explain this behavior, such as
a change strategy within the MPI implementation.

2) Latency: We also isolated our results with an empty
message (0 bytes) to provide a rough estimate of the latency
between nodes and within a node. Table IV shows these
results. For intra-node communication this latency is almost
three times higher on the KNL-based platform. We observe
the same behavior for inter-node communication with a
latency on Cooley 60% lower than on Theta.

C. MPI IO Performance
To further compare the IO performance between Haswell

and KNL with multiple nodes, we developed an MPI-based
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Fig. 18. Bandwidth comparison for KNL-based and Haswell-based nodes
for a ping-pong benchmark with intra-node and inter-node communication

TABLE IV
LATENCY IN µs BASED ON THE SENDING OF A 0 B MESSAGE

Haswell KNL
Inter-node 1.97 4.92
Intra-node 0.23 0.63

micro-benchmark. The benchmark writes a ≈ 486GB dataset
to the Lustre file system using MPI collective IO, with
varying collective buffer sizes and numbers of aggregators.
KNL nodes have 68 cores per node, as opposed to 32 for
Haswell nodes. For a fair comparison in our experiments,
we used 32 MPI ranks per node on both types of nodes, and
each with 32 nodes, resulting in a total number of 1024 MPI
processes in both cases. Additionally, we set the stripe count
to 32 and stripe size equal to the collective buffer size for
both.

Figure 19 and 20 show the IO performance with collective
buffer size ranging from 1MB to 64MB and number of
IO aggregators per node from 1 to 16. Generally, the IO
bandwidth increases with collective buffer size, with a few
exceptions for 8 and 16 aggregators per node cases. Thus it
is recommended to use larger collective buffer sizes, as
well as Lustre’s stripe size.

The IO bandwidth also increases with the number of
aggregators, but only up to 8 aggregators per node. When
there are more aggregators, we see a performance decrease as
the stripe size gets larger. As a result, setting 4 aggregators
per node on Haswell nodes and 8 aggregators per node
on KNL nodes are recommended to have the best write
performance.

IV. CONCLUSION AND FUTURE WORK

In this work, we have studied the IO performance gap
between Haswell and KNL nodes. Our testing identified
bottlenecks from CPU frequencies, page buffer (memory
copying), and network latency. When we set KNL and
Haswell to have same frequencies, we still see a large
performance gap, until we disable the page buffer. With

Fig. 19. Haswell IO Bandwidth with different collective buffer size and
aggregators per node.

Fig. 20. KNL IO Bandwidth with different collective buffer size and
aggregators per node.

direct IO, we see a nearly 96% performance ratio of KNL
to Haswell on single core tests. We further verified this
with IOR and scaled to full ranks on a single node. Page
buffering certainly helps in many cases, but in case of reading
larger data (larger than page buffer) for just one time, direct
read operations, which bypasses the kernel buffer, outperform
page buffered and synchronous reads. Page buffer manage-
ment is slower on KNL is indicated from the comparison of
buffered IO bandwidth ration and direct IO bandwidth ratio.
Direct read also scales much better than buffered IO. In case
of inter-node IO, we have benchmarked the point-to-point
communication latency, and have observed 4.92 µsec latency
on KNL and 1.97 µsec latency on Haswell nodes. The MPI-
IO tests suggest that 2-4 aggregators and 4-8 aggregators
per node on Haswell and KNL separately will yield the best
write performance. Overall, this study has provided a clear
picture of the IO performance between Haswell and KNL
cores, and in the future, we would like to perform further
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testing to explore heterogeneous IO optimization for many
core system.
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