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Context

I Computational science simulation in scientific domains such as in
materials, high energy physics, engineering, have large performance needs

In computation: the Human Brain Project, for instance, goes after at least
1 ExaFLOPS
In I/O: typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I New workloads with specific needs of data movement
Big data, machine learning, checkpointing, in-situ, co-located processes, ...
Multiple data access pattern (model, layout, data size, frequency)



Context

I Massively parallel supercomputers supplying an increasing processing
capacity

The first 10 machines listed in the top500 ranking are able to provide more
than 10 PFlops
Aurora, the first Exascale system in the US (ANL!), will likely feature
millions of cores

I However, the memory per core or TFlop is decreasing...
Criteria 2007 2017 Relative Inc./Dec.

Name, Location BlueGene/L, USA Sunway TaihuLight, China N/A
Theoretical perf. 596 TFlops 125,436 TFlops ×210

#Cores 212,992 10,649,600 ×50
Memory 73,728 GB 1,310,720 GB ×17.7

Memory/core 346 MB 123 MB ÷2.8
Memory/TFlop 124 MB 10 MB ÷12.4

I/O bw 128 GBps 288 GBps ×2.25
I/O bw/core 600 kBps 27 kBps ÷22.2

I/O bw/TFlop 214 MBps 2.30 MBps ÷93.0

Table: Comparison between the first ranked supercomputer in 2007 and in 2017.

Growing importance of movements of data on current
and upcoming large-scale systems



Context

I Mitigating this bottleneck from an hardware perspective leads to an
increasing complexity and a diversity of the architectures

Deep memory and storage hierarchy
• Blurring boundary between memory and storage
• New tiers: MCDRAM, node-local storage, network-attached memory, NVRAM,

Burst buffers
• Various performance characteristics: latency, bandwidth, capacity

Complexity of interconnection network
• Topologies: 5D-Torus, Dragon-fly, fat trees
• Partitioning: network dedicated to I/O
• Routing policies: static, adaptive

Credits: LLNL / LBNL



Data Aggregation

I Selects a subset of processes to aggregate data before writing it to the
storage system

I Improves I/O performance by writing larger data chunks
I Reduces the number of clients concurrently communicating with the

filesystem
I Available in MPI I/O implementations such as ROMIO

Limitations:
I Inefficient aggregator

placement policy
I Cannot leverage the deep

memory hierarchy
I Inability to use staging

data
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Figure: Two-phase I/O mechanism



MA-TAPIOCA - Memory-Aware TAPIOCA

I Based on TAPIOCA, a library implementing the two-phase I/O scheme for
topology-aware data aggregation at scale1 and featuring:

Optimized implementation of the two-phase I/O scheme (I/O scheduling)
Network interconnect abstraction for I/O performance portability
Aggregator placement taking into account the network interconnect and the
data access pattern

I Augmented to include:
Abstraction including the topology and the deep memory hierarchy
Architecture-aware aggregators placement
Memory-aware data aggregation algorithm
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1F. Tessier, V. Vishwanath, and E. Jeannot. “TAPIOCA: An I/O Library for Optimized
Topology-Aware Data Aggregation on Large-Scale Supercomputers”. In: 2017 IEEE International
Conference on Cluster Computing (CLUSTER). Sept. 2017.



MA-TAPIOCA - Abstraction for Interconnect Topology

I Topology characteristics include:
Spatial coordinates
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns such as routing in the future

Listing 1: Function prototypes for network interconnect
i n t networkBandwidth ( i n t l e v e l ) ;
i n t networkLatency ( ) ;
i n t networkDistanceToIONode ( i n t rank , i n t IONode ) ;
i n t networkDis tanceBetweenRanks ( i n t srcRank , i n t destRank ) ;

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
(Credit: LLNL / LBNL)



MA-TAPIOCA - Abstraction for Memory and Storage

I Memory management API
I Topology characteristics including spatial

location, distance
I Performance characteristics: bandwidth,

latency, capacity, persistency
I Scope of memory/storage tiers (PFS vs

node-local SSD)
On those cases, a process has to be
involved at destination

Memory API (alloc, write, read, free, …)

Abstraction layer (mmap, memkind, …)

DRAM HBM NVRAM PFS ...

MA-TAPIOCA

Listing 2: Function prototypes for memory/storage data movements
bu f f_ t∗ memAlloc (mem_t mem, i n t bu f f S i z e , boo l masterRank ,

char∗ f i l eName , MPI_Comm comm) ;
vo id memFree ( bu f f_ t ∗bu f f ) ;
i n t memWrite ( bu f f_ t ∗bu f f , vo id∗ s r cBu f f e r ,

i n t s r c S i z e , i n t o f f s e t , i n t destRank ) ;
i n t memRead ( bu f f_ t ∗bu f f , vo id∗ s r cBu f f e r ,

i n t s r c S i z e , i n t o f f s e t , i n t s rcRank ) ;
vo id memFlush ( bu f f_ t ∗bu f f ) ;
i n t memLatency (mem_t mem) ;
i n t memBandwidth (mem_t mem) ;
i n t memCapacity (mem_t mem) ;
i n t memPers i s tency (mem_t mem) ;



MA-TAPIOCA - Memory and topology aware aggregator placement

I Initial conditions: memory capacity for
aggregation and destination.

I ω(u, v): Amount of data to move from memory
bank u to v

I d(u, v): distance between memory bank u and v
I l : The latency such as l = max (lnetwork , lmemory );
I Bu→v : The bandwidth from memory bank u to

u, such as Bu→v = min (Bwnetwork , Bwmemory ).
I A: Aggregator, T : Target

P0 P1 P2 P3 Application
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MemAware(A) = min (CostA + CostT )



MA-TAPIOCA - Memory and topology aware aggregator placement
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Value# HBM DRAM NVR Network
Latency (ms) 10 20 100 30

Bandwidth (GBps) 180 90 0.15 12.5
Capacity (GB) 16 192 128 N/A
Persistency No No job lifetime N/A

Table: Memory and network capabilities based on vendors information



MA-TAPIOCA - Memory and topology aware aggregator placement
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Table: Memory and network capabilities based on vendors information

P# ω(i, A) HBM DRAM NVR
0 10 0.593 0.603 2.350
1 50 0.470 0.480 2.020
2 20 0.742 0.752 2.710
3 5 0.503 0.513 2.120

Table: For each process, MemAware(A)



MA-TAPIOCA - Two-phase I/O algorithm

I Aggregator(s) selection according to the cost model described previously
I Overlapping of I/O and aggregation phases based on recent MPI features

such as RMA and non-blocking operations
I The aggregation can be either defined by the user or chosen with our

placement model
MA-TAPIOCA_AGGTIER environment variable: topology-aware placement only
MA-TAPIOCA_PERSISTENCY environment variable to set the level of
persistency required in case of a memory and topology aware placement
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MA-TAPIOCA - Two-phase I/O algorithm
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MA-TAPIOCA - Two-phase I/O algorithm

I Aggregator(s) selection according to the cost model described previously
I Overlapping of I/O and aggregation phases based on recent MPI features

such as RMA and non-blocking operations
I The aggregation can be either defined by the user or chosen with our

placement model
MA-TAPIOCA_AGGTIER environment variable: topology-aware placement only
MA-TAPIOCA_PERSISTENCY environment variable to set the level of
persistency required in case of a memory and topology aware placement

Algorithm 1: Collective MPI I/O
1 n← 5;
2 x [n], y [n], z[n];
3 ofst ← rank × 3× n;
55

6 MPI_File_read_at_all (f , ofst, x , n, type, status);
7 ofst ← ofst + n ;
99

10 MPI_File_read_at_all (f , ofst, y , n, type, status);
11 ofst ← ofst + n;
1313

14 MPI_File_read_at_all (f , ofst, z, n, type, status);

Algorithm 2: MA-TAPIOCA
1 n← 5;
2 x [n], y [n], z[n];
3 ofst ← rank × 3× n;
55

6 for i ← 0, i < 3, i ← i + 1 do
7 count[i ]← n;
8 type[i ]← sizeof (type);
9 ofst[i ]← ofst + i × n;

1111

12 MA-TAPIOCA_Init (count, type, ofst, 3);
1414

15 MA-TAPIOCA_Read (f , ofst, x , n, type, status);
16 ofst ← ofst + n ;
1818

19 MA-TAPIOCA_Read (f , ofst, y , n, type, status);
20 ofst ← ofst + n;
2222

23 MA-TAPIOCA_Read (f , ofst, z, n, type, status);



Experiments - Test-beds

Theta
I Cray CX40 11.69 PFlops supercomputer at Argonne

4,392 Intel KNL nodes with 64 cores
16 GB of HBM, 192 GB of DRAM and 128 GB on-node SSD

I 10 PB parallel file system managed by Lustre
I Cray Aries dragonfly network interconnect
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 Compute node

Sonnexion storage

 Aries router

Knights Landing proc.
4 per router

Lustre filesystem

2D all-to-all structure
96 routers per group

36 tiles (2 cores, L2)
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    Intel KNL 7250
Dragonfly network

  Elec. links 14 GBps
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12 groups - 24 cabinets
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Service node
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Irregular mapping
 

210 GBps

Cooley
I Intel Haswell-based visualization and analysis cluster at Argonne

126 nodes with 12 cores and a NVIDIA Tesla K80
384 GB of DRAM and a local hard drive (345 GB)

I 27 PB of storage managed by GPFS
I FDR Infiniband interconnect



Experiments - S3D-IO

S3D-IO
I I/O kernel of direct numerical simulation code

in the field of computational fluid dynamics
focusing on turbulence-chemistry interactions
in combustion.

I 3D domain decomposition
I The state of each element is stored in an array

of structure data layout
I The files as output are used for checkpointing

and data analysis Figure: Credits: C.S. Yoo et
Al., Ulsan NIST, Republic of
Korea

Experimental setup
I Theta, a 11 PFlops Cray XC40 supercomputer with a Lustre filesystem

Single shared file collectively written every n timesteps, stripped among
OST.
Available tiers of memory: DRAM, HBM, on-node SSD
96 aggregators for 256 nodes and 384 for 1024 nodes for both MPI-IO and
MA-TAPIOCA
Lustre: 48 OST, 16MB stripe size, 4 aggr. per OST, 16MB buffer size

I Average and standard deviation on 10 runs



S3D-IO on Cray XC40 + Lustre

I Typical use-case with 134 and 537 millions grid points respectively
distributed on 256 and 1024 nodes on Theta (16 ranks per node)

I Aggregation performed on HBM with MA-TAPIOCA
I I/O bandwidth increased by a factor of 3x on 1024 nodes.

Table: Maximum write bandwidth (GBps).

Points Size 256 nodes 1024 nodes
MPI-IO 134M 160 GB 3.02 GBps 4.42 GBps

MA-TAPIOCA 537M 640 GB 4.86 GBps 13.75 GBps
Perf. Improvement N/A N/A +60.93% +210.91%

I Experiments on 256 nodes (134 millions grid points) while artificially
reducing the memory capacity.

I The capacity requirement not being fulfilled, our placement algorithm
selects another aggregation layer (gray boxes)

Table: Maximum write bandwidth (GBps).

Run HBM DDR NVRAM Bandwidth Std dev.
1 16 GB 192 GB 128 GB 4.86 GBps 0.39 GBps
2 ↓ 32 MB 192 GB 128 GB 4.90 GBps 0.43 GBps
3 ↓ 32 MB ↓ 32 MB 128 GB 2.98 GBps 0.15 GBps



Experiments - HACC-IO

HACC-IO
I I/O part of a large-scale cosmological

application simulating the mass evolution
of the universe with particle-mesh
techniques

I Each process manages particles defined by
9 variables (38 bytes)

XX, YY, ZZ, VX, VY, VZ, phi, pid and
mask

I Checkpointing files with data in an array
of structure data layout

Experimental setup
I Theta, a 11 PFlops Cray XC40 supercomputer with a Lustre filesystem

Available tiers of memory: DRAM, HBM, on-node SSD
Lustre: 48 OST, 16MB stripe size, 4 aggr. per OST, 16MB buffer size

I Cooley, an Haswell-based visualization and analysis cluster with GPFS
Available tiers of memory: DRAM, on-node HDD

I Average and standard deviation on 10 runs



HACC-IO on Cray XC40 + Lustre
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I Experiments on 1024 nodes on Theta
I Aggregation layer set with the MA-TAPIOCA_AGGTIER environment variable
I Regardless of the subfiling granularity, MA-TAPIOCA can use the local

SSD as a shared file destination (mmap + MPI_Win)



HACC-IO on Cray XC40 + Lustre

I Experiments on 1024
nodes on Theta, one file
per node

I Comparison between
aggregation on DRAM and
HBM when writing on the
local SSD

I I/O performance achieved
comparable

I Predicted by our model
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HACC-IO on Cray XC40 + Lustre

I Typical workflow that can be seamlessly implemented with MA-TAPIOCA
I Experiments on 256 nodes on Theta
I Write time counter-balanced by the read time from the local storage
I Total I/O time reduced by more than 26%

A
pp

lic
at

io
n

D
R

A
M

D
R

A
M

Parallel 
file 

system

Aggregation I/O

Write

Read

SSD

mmap

Table: Max. Write and Read bandwidth (GBps) and total I/O time achieved with and
without aggregation on SSD

Agg. Tier Write Read I/O time
MA-TAPIOCA DDR 47.50 38.92 693.88 ms

MPI-IO DDR 32.95 37.74 843.73 ms
MA-TAPIOCA SSD 26.88 227.22 617.46 ms

Variation -36.10% +446.94% -26.82%



HACC-IO on Cooley + GPFS

I Code and performance portability thanks to our abstraction layer
I Experiments on 64 nodes on Cooley (Haswell-based cluster)
I Same application code, same optimization algorithm using our memory

and network interconnect abstraction
I Total I/O time reduced by 12%
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Table: Max. Write and Read bandwidth (GBps) and total I/O time achieved with and
without aggregation on local HDD

Agg. Tier Write Read I/O Time
MA-TAPIOCA DDR 6.60 38.80 123.41 ms

MPI-IO DDR 6.02 17.46 155.40 ms
MA-TAPIOCA HDD 5.97 35.86 135.86 ms

Variation -0.83% +105.38% -12.57%



Conclusion and Future Work

I MA-TAPIOCA, a data aggregation library able to take advantage of the
network interconnect and the deep memory hierarchy for improved
performance

Architecture abstraction making possible to perform data aggregation on
any type of memory or storage
Memory and topology aware aggregators placement
Efficient data aggregation algorithm

I Good performance at scale, outperforming MPI I/O
On a typical workflow, up to 26% improvement on a Cray XC40
supercomputer with Lustre and up to 12% on a visualization cluster

I Code and performance portability on large-scale supercomputers
Same application code running on various platforms
Same optimization algorithms using our interconnect abstraction

Future Work
I As the memory hierarchy tends to be deeper and deeper, multi-level data

aggregation is of interest
I Intervene at a lower level to capture any kind of data types
I Transfer to widely used I/O libraries



Conclusion
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