
System abstractions to facilitate data movement in
supercomputers with deep memory and interconnect hierarchy

François Tessier, Venkatram Vishwanath

Argonne National Laboratory, USA

August 2, 2017

Data Movement at Scale

I Computational science simulation such as climate, heart and brain
modelling or cosmology have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers

 0.0001

 0.001

 0.01

 0.1

 1997 2001 2005 2009 2013 2017

R
a
ti

o
 o

f
I/

O
 (

T
B

/s
)

to
 F

lo
p

s
(T

F
/s

)
in

 p
e
rc

e
n

t

Years

IOPS/FLOPS of the #1 system in Top 500

Complex Interconnect Hierarchies

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O

Compute nodes I/O nodes

Storage

Q
D

R
 In

fin
ib

an
d

sw
itc

h

Bridge nodes

5D Torus network
2 GBps per link 2 GBps per link 4 GBps per link

PowerPC A2, 16 cores
 16 GB of DDR3

GPFS filesystem

IO forwarding daemon
 GPFS client

 Pset
128 nodes

 2 per I/O node

Mira
- 49,152 nodes / 786,432 cores
- 768 TB of memory
- 27 PB of storage, 330 GB/s (GPFS)
- 5D Torus network
- Peak performance: 10 PetaFLOPS

Deep Memory Hierarchies and Filesystem characteristics

I We need to exploit the deep memory hierarchy tiers for improved
performance

This includes effective ways to seamlessly use HBM, DRAM, NVRAM,
BurstBuffers, etc.

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.

 Compute node

Storage

 Aries router
Knights Landing proc.
 4 per router

Lustre filesystem

 2D all-to-all structure
 96 routers per group

36 tiles (2 cores, L2)
16 GB MCDRAM
192 GB DDR4
128 GB SSD

 Intel KNL 7250
Dragonfly network

 Elec. links 14 GBps

6
(le

ve
l 2

)

16 (level 1)

Dragonfly network
Opt. links 12.5 GBps

 Compute node

2-cabinet group
 9 groups - 18 cabinets
 16 x 6 routers hosted
 All-to-all

(le
ve

l 3
)

IB FDR
 56 GBps

Service node
 LNET, gateway, …
 Irregular mapping

TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale on IBM BG/Q with GPFS and Cray XC40 with Lustre
(Cluster’17)

Topology-aware aggregator placement
Pipelining (RMA, non-blocking calls)
Interconnect architecture abstraction

I Outperfoms MPI I/O on the IO kernel of HACC and two data layouts on a
Cray XC40 + Lustre architecture

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 2.7x

W: 3.8x

I/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per process (MB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

R: 2.3x

W: 3.6xI/
O

 B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per process (kB)

TAPIOCA - Read
TAPIOCA - Write

MPI-IO - Read
MPI-IO - Write

Figure: HACC-IO on 1024 Theta-nodes (16 ranks per node) - 48 OSTs, 8 MB stripe
size, 192 aggr, 16 MB buffer size - AoS (left) and SoA (right) data layouts.

TAPIOCA - Ongoing research

I Move toward a generic data movement library for data-intensive
applications exploiting deep memory/storage hierarchies as well as
interconnect to facilitate I/O, in-transit analysis, data transformation,
data/code coupling, workflows, ...

X Y Z X Y Z X Y Z X Y Z

Application

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z TargetX X X X Y Y

Y Y Z Z Z Z

P0 P1 P2 P3

P0 P2 DRAM, MCDRAM,
NVRAM, BB, ...

DRAM, MCDRAM,
NVRAM, PFS, BB, ...

DRAM, MCDRAM, ...

Dragonfly, torus, ...

Dragonfly, torus, ...

Network Memory/Storage

What is the right level of abstraction?

A specific abstraction for every
system including the architecture,
filesystems, capturing every phase
of deployment, relevant software
versions, etc.

A generalized abstraction that maps
to current and expected future deep
memory hierarchies and intercon-
nects (including performance, con-
tention, etc.)

The abstractions and tradeoffs for performant and portable data movement

Abstractions for Interconnect Topology

I Topology characteristics include:
Spatial coordinates
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns and uncertainties such as routing,
contention

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
(Credit: LLNL / LBNL)

Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

C2

I Contention-aware algorithm: static and dynamic routing policies, unknown
vendors information, ...

Abstractions for Memory and Storage

I Topology characteristics
including spatial location,
capacity and distance

I Performance characteristics
including bandwidth, latency
and support for concurrency

I Access characteristics such as
byte-based vs block based

I Persistency

Memory API (alloc, write, read, store, load, free, …)

Abstraction layer

DRAM MCDRAM NVRAM PFS BB

Application

Need to account for application needs in I/O, in-situ vizualisation, in-situ
analysis, data transformation, workflows, etc. and map these onto the un-
derlying abstractions for improved performance.

Abstractions for Memory and Storage - Our approach

I Work in progress to move data
from the application to any tier of
memory or storage

I Some data movements need one or
more processes involved

I Scope of memory/storage tiers
(PFS vs node-local SSD)

I Model for partitioning data to take
advantage of fast memories with
smaller capacities

W

R1 R2

T1 T... Tn

Memory/storage tiers
Capacity Cn, Speed Sn

Writer
Volume Vw, Bandwidth Bw

Readers
Volume Vk, Bandwidth Bk, Freq fk

Figure: System with a heterogeneous
intermediate memory/storage. One writer
and k readers

Listing 1: Function prototypes for memory/storage data movements
vo id memAlloc (vo id ∗bu f f , i n t64_t bu f f S i z e , mem_t mem) ;
vo id memFree (vo id ∗bu f f , mem_t mem) ;
i n t mem{Write , S to r e } (vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t) ;
i n t mem{Read , Load} (vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t) ;
vo id memFlush (vo id ∗bu f f , mem_t mem) ;

Conclusion

I Extending TAPIOCA from an I/O library to a data movement library is
challenging

I A compromise between genericity and portability is required
I Our high-level abstraction shows good portable performance on two

large-scale systems when considering data locality
I A refined model may have a better impact on performance but leads to an

increasingly complex abstraction

Conclusion

Thank you for your attention!
ftessier@anl.gov

