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Data Movement at Scale

I Computational science simulation such as climate, heart and brain
modelling or cosmology have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers
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Complex Interconnect Hierarchies

I On BG/Q, data movement needs to fully exploit the 5D-Torus topology
for improved performance

I Additionally, we need to exploit the placement of the I/O nodes for
performance

I Cray supercomputers have similar challenges with dragonfly-based
interconnects together with placement of LNET nodes for I/O
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Deep Memory Hierarchies and Filesystem characteristics

I We need to exploit the deep memory hierarchy tiers for improved
performance

This includes effective ways to seamlessly use HBM, DRAM, NVRAM,
BurstBuffers, etc.

I We need to leverage filesystem specific features such as OSTs and striping
in Lustre, among others.
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TAPIOCA

I Library based on the two-phase I/O scheme for topology-aware data
aggregation at scale on IBM BG/Q with GPFS and Cray XC40 with Lustre
(Cluster’17)

Topology-aware aggregator placement
Pipelining (RMA, non-blocking calls)
Interconnect architecture abstraction

I Outperfoms MPI I/O on the IO kernel of HACC and two data layouts on a
Cray XC40 + Lustre architecture
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Figure: HACC-IO on 1024 Theta-nodes (16 ranks per node) - 48 OSTs, 8 MB stripe
size, 192 aggr, 16 MB buffer size - AoS (left) and SoA (right) data layouts.



TAPIOCA - Ongoing research

I Move toward a generic data movement library for data-intensive
applications exploiting deep memory/storage hierarchies as well as
interconnect to facilitate I/O, in-transit analysis, data transformation,
data/code coupling, workflows, ...
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What is the right level of abstraction?

A specific abstraction for every
system including the architecture,
filesystems, capturing every phase
of deployment, relevant software
versions, etc.

A generalized abstraction that maps
to current and expected future deep
memory hierarchies and intercon-
nects (including performance, con-
tention, etc.)

The abstractions and tradeoffs for performant and portable data movement



Abstractions for Interconnect Topology

I Topology characteristics include:
Spatial coordinates
Distance between nodes: number of hops, routing policy
I/O nodes location, depending on the filesystem (bridge nodes, LNET, ...)
Network performance: latency, bandwidth

I Need to model some unknowns and uncertainties such as routing,
contention

Figure: 5D-Torus on BG/Q and intra-chassis Dragonfly Network on Cray XC30
(Credit: LLNL / LBNL)



Abstractions for Interconnect Topology - Our current approach

I TAPIOCA features a topology-aware aggregator placement
I This approach is based on quantitative information easy to gather:

latency, bandwidth, distance between nodes

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v
I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 =
∑

i∈VC ,i 6=A

(
l × d(i , A) + ω(i,A)

Bi→A

)
I C2 = l × d(A, IO) + ω(A,IO)

BA→IO

I TopoAware(A) = min (C1 + C2)
Vc : Compute nodes
IO : I/O node
A  : Aggregator

C1

C2

I Contention-aware algorithm: static and dynamic routing policies, unknown
vendors information, ...



Abstractions for Memory and Storage

I Topology characteristics
including spatial location,
capacity and distance

I Performance characteristics
including bandwidth, latency
and support for concurrency

I Access characteristics such as
byte-based vs block based

I Persistency

Memory API (alloc, write, read, store, load, free, …)

Abstraction layer

DRAM MCDRAM NVRAM PFS BB

Application

Need to account for application needs in I/O, in-situ vizualisation, in-situ
analysis, data transformation, workflows, etc. and map these onto the un-
derlying abstractions for improved performance.



Abstractions for Memory and Storage - Our approach

I Work in progress to move data
from the application to any tier of
memory or storage

I Some data movements need one or
more processes involved

I Scope of memory/storage tiers
(PFS vs node-local SSD)

I Model for partitioning data to take
advantage of fast memories with
smaller capacities
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Capacity Cn, Speed Sn

Writer
Volume Vw, Bandwidth Bw

Readers
Volume Vk, Bandwidth Bk, Freq fk

Figure: System with a heterogeneous
intermediate memory/storage. One writer
and k readers

Listing 1: Function prototypes for memory/storage data movements
vo id memAlloc ( vo id ∗bu f f , i n t64_t bu f f S i z e , mem_t mem ) ;
vo id memFree ( vo id ∗bu f f , mem_t mem ) ;
i n t mem{Write , S to r e } ( vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t ) ;
i n t mem{Read , Load} ( vo id∗ s r cBu f f e r , i n t64_t s r c S i z e ,

vo id ∗de s tBu f f e r , mem_t mem, i n t64_t o f f s e t ) ;
vo id memFlush ( vo id ∗bu f f , mem_t mem ) ;



Conclusion

I Extending TAPIOCA from an I/O library to a data movement library is
challenging

I A compromise between genericity and portability is required
I Our high-level abstraction shows good portable performance on two

large-scale systems when considering data locality
I A refined model may have a better impact on performance but leads to an

increasingly complex abstraction
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