
Automated Dynamic Data Redistribution

Thomas Marrinan1, Joseph A. Insley1, Silvio Rizzi1, François Tessier1, and Michael E. Papka1,2
1Argonne National Laboratory

Lemont, IL, USA
{tmarrinan, insley, srizzi, ftessier, papka}@anl.gov

2Northern Illinois University
DeKalb, IL, USA
papka@niu.edu

Abstract—High-performance distributed memory applications
often load or receive data in a format that differs from what
the application uses. One such difference arises from how the
application distributes data for parallel processing. Data must
be redistributed from how it was laid out by the producer to
how the application needs the data to be laid out amongst its
processes. In this paper, we present a large-scale distributed
memory library, provided to developers in an easily integrated
API, for automating data redistribution in MPI enabled
applications. We then present the results of two scientific
computing use cases to evaluate our library. The first use case
highlights how dynamic data redistribution can greatly reduce
load time when reading three-dimensional medical imaging
data from disk. The second use case highlights how dynamic
data redistribution can facilitate in-transit analysis of
computational fluid dynamics, which results in smaller data
output size and faster time-to-discovery.

Keywords-data redistribution; distributed memory; MPI;
scalable algorithms; scientific applications

I. INTRODUCTION
Simulations and analysis run on high-performance

computing (HPC) resources are driving large-scale science
and engineering. Applications running on these massively
parallel, distributed memory systems must divide data and
computation amongst individual compute processes. Current
trends, elucidated in the 2014 DOE High Performance
Computing Operational Review (HPCOR), show that the
cost of data relative to computation is growing [5]. This
means that HPC applications must dedicate more time and
resources to loading and saving data, which results in less
utilization for scientific computation. Findings from HPCOR
also state that science use cases produce and use a wide
variety of data with different access patterns. Efficient data
transformations can help address these issues by load-
balancing data accesses and supporting a variety of access
patterns.

Existing research on data transformation to enable
compatibility between applications primarily surrounds how
data is organized within a process (e.g. storing multivariate
data in a planar configuration or interleaved configuration)
[15]. When it comes to handling the distribution of data
between processes, most solutions are application specific
and not easily integrated into other software packages [1,19].
We identified the flexible redistribution of data between
processes as an open research area. Therefore, we aimed to
automate the redistribution of dynamic data with minimal

instructions in order to reduce the burden placed on
application developers.

In this paper, we address handling layout differences
between data producers and data consumers, as well as
provide methods for load-balanced parallel data management
routines. We have developed the Dynamic Data
Redistribution (DDR) library, which can be seamlessly
integrated into existing scientific and engineering codebases
with three simple function calls. The DDR library calculates
what data must be exchanged with each processes and
abstracts MPI routines to enable HPC applications to
redistribute data between processes. Application developers
simply must specify what data each process currently owns
and the data each process desires in respect to the overall
data domain.

DDR was designed to achieve two majors goals: 1)
reduce overall application disk read and write time by
facilitating load-balanced I/O, and 2) transform inter-process
data layout on-the-fly to enable various data access patterns.
By accomplishing these goals, DDR serves as an efficient
technique for accessing data that is stored in a fashion that is
not directly compatible with the application wishing to use it.

We have evaluated DDR with two authentic scientific
use cases. First, we highlight how DDR can facilitate load-
balanced parallel I/O when reading a stack of TIFF images to
perform parallel visualization of three-dimensional medical
imaging data. In this case, DDR enables the visualization
application to read the image files from disk in a load-
balanced fashion. After the images are read in, individual
pixels are redistributed so that each process can properly
access the data it needs to create the final visualization.
Results from this use case show that DDR can lead to nearly
a 25X I/O speed-up compared to the traditional parallel I/O
technique previously used.

For the second use case, we highlight how DDR can
enable real-time analysis of a computational fluid dynamics
(CFD) simulation. In this case, a visualization application
can use DDR to enable on-the-fly transformation of in-transit
data received from the CFD simulation. This transformation
allows data to be redistributed from how it was laid out in the
simulation to how it needs to be laid out in the visualization
application. Rendering images while the simulation is
running allows the scientists to monitor its progress and gain
situational awareness, which can lead to a faster time-to-
discovery. Additionally, saving rendered images to disk,
rather than the raw simulation data, results in significantly
smaller data output size as well as faster I/O [12].

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3 2017

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPSW.2017.17

1208

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0 2017

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPSW.2017.17

1208

II. RELATED WORK
Parallel distributed memory applications are traditionally

written using MPI. However, many common design patterns
are not sufficiently abstracted, causing unnecessary
complexities for application developers. Kaushik et al. [8]
talk extensively about the issue of accessing distributed data.
They write: “Different phases of a program vary in their
access patterns to a shared array and a different data
distribution of the array is often best suited for each phase…
Scientific libraries are tuned to provide peak performance for
a fixed set of distributions for the input arrays. These
distributions may not conform with the distributions of the
actual parameters, leading to performance degradation.” Our
DDR library complements the current field of work that
attempts to address this problem.

A. Data Transformations
Perry and Swany [13] developed a method called data

type fission that segregates transmitted fields from non-
transmitted fields for sending and receiving data between
processes. This process enables MPI applications to
efficiently transmit certain fields of a native object while
omitting others. The use of data type fission eliminates extra
data copies and leads to a significant improvement in
performance in communication heavy applications. While
this type of data transformation can lead to more efficient
communication, it does not abstract the redistribution of data.
This, in turn, leaves a heavy burden on application
developers when data redistribution is necessary.

Kjolstad et al. [9] have developed an algorithm to
automate the creation of custom MPI data types. Their work
abstracts the transformation of non-continuous data for
efficient retrieval. Performing these transformations
manually in real-world applications is complex, time-
consuming, and error-prone. Therefore, their algorithm aims
to improve programmer productivity and reliability. Our
work has similar goals, but for inter-process data
transmission in addition to staging the data for efficient
retrieval.

Sharma et al. [14] investigated array interleaving, a data
transformation technique that combines elements from
multiple arrays in continuous memory. This transformation
can reduce the number of memory accesses and lead to
greater computational efficiency due to spatial locality of
data. Experimental results also show a significant decrease in
memory energy when using array interleaving. While our
research looks at a different aspect of data transformations,
this work could be utilized along side of DDR to efficiently
stage data for redistribution.

B. Data Redistribution
DIY2 [9] provides a data and computation abstraction for

parallel workflows. The main use for DIY2 is to enable the
same program to execute on various platforms, from HPC
distributed memory environments to a single multi-core
workstation. One feature of DIY2 is to abstract the
communication patterns for exchanging data between
processes when running on a distributed memory system.
However, this abstraction is intended for iterative processes

requiring information from local neighbors or global
reductions. In contrast, our work is designed to facilitate the
staging of data onto the proper processes for computation.

Esnard et al. [5] present a steering framework for parallel
simulations. They enable the coupling of a visualization
system with a running HPC simulation, allowing users to
view and modify the simulation as it runs. Since data on the
HPC simulation likely has a different layout than is needed
in the parallel visualization, data must be reorganized. In
their work, this redistribution of data occurs at the socket
level when transmitting data over the network between
simulation processes and visualization processes. Our work
was designed to accomplish a similar redistribution of data,
but without relying on external network communication.

C. Scientific Applications
Our research on automating dynamic data redistribution

can lead to efficiencies in a variety of common large-scale
scientific and engineering workflows. One common
technique is visualizing 3D data using volume rendering
[7,18]. In order to handle ultra high-resolution data sets,
research has been conducted on performing distributed
volume rendering using many compute nodes with many
GPUs [4,14,16]. However, loading large 3D data sets into
common distributed rendering packages can be time
consuming. One such software is ParaView [2], which
requires preprocessing data into a custom format in order to
leverage parallel data distribution. Our research could be
integrated into such packages to enable on-the-fly conversion
from data formats that are laid out in an otherwise
incompatible fashion.

Another scientific workflow that has increased demand is
in-situ analysis of running simulation. One way to perform
in-situ analysis is to have two separate resources, one
dedicated to the simulation and the other dedicated to the
analysis. In this scenario data must be sent in-transit from
one distributed memory application to another. ADIOS [10]
and GLEAN [17] are two such frameworks that enable this
type of data movement. However, there is still potential for
data needing to be redistributed once it arrives on the
analysis resource due to differences in the number of
processes in each application or how the applications expect
data to be laid out. Therefore integration of DDR into
analysis applications receiving simulation data in-transit can
facilitate the efficient processing of real-time data.

III. METHODS
This section covers the library we developed for

automated dynamic data redistribution in distributed memory
applications. We have broken the process down into three
major components: initialization and description of the data,
setting up the mapping of data between processes, and the
actual transmission of data between processes. Each of these
three components have been wrapped into a single public
function in our library. DDR_NewDataDescriptor is the
public function that creates an object to describe the type of
data being reorganized. DDR_SetupDataMapping is the
public function that informs our library what data each
process in the application owns and what data each process

12091209

needs. DDR_ReorganizeData is the public function that
performs MPI calls to exchange data between processes. By
limiting the outward facing code, we have reduced the
burden on application developers to integrate our library into
existing projects.

Throughout this section we reference the following
example, E1, to help illustrate the concepts of dynamic data
movement enabled by DDR. E1 is a distributed memory
application with four processes operating on a two-
dimensional grid with an overall domain of 8x8. Each
process owns two separate rows, but needs the data located
in one of the quadrants of the overall domain. Figure 1
illustrates the setup and data movement needs for E1. In
addition to providing a visual overview of DDR, we outline
how the library can be easily integrated into an application.
Algorithm 1 provides pseudocode for E1 using the three
public function calls in the DDR library. In the algorithm,
dataown represents the two 8x1 chunks of data owned by each
process prior to data redistribution, and dataneed represents
the quadrant of data needed by each process after data
redistribution.

Algorithm 1 Sample use of the DDR library.
Input: dataown
Output: dataneed
1: desc = DDR_NewDataDescriptor(nProcesses,

DATA_TYPE_2D, MPI_FLOAT, sizeof(float))
2: chunksown = 2
3: dimsown = {[8, 1], [8, 1]}
4: offsetsown = {[0, rank], [0, rank+4]}
5: right = rank % 2
6: bottom = rank / 2
7: dimsneed = [4, 4]
8: offsetsneed = [4*right, 4*bottom]
9: DDR_SetupDataMapping(rank, nProcesses, chunksown,

dimsown, offsetsown, dimsneed, offsetsneed, desc)
10: DDR_ReorganizeData(nProcesses, dataown, dataneed, desc)

A. Data Description
The first step to enable DDR is to create a description of

the type of data that needs to be redistributed. DDR currently
supports 1D, 2D, or 3D arrays stored in continuous memory
with each element having a fixed size. An application creates

a DDR descriptor with the DDR_NewDataDescriptor
function. This function has four parameters: the number of
processes in the MPI application; whether the data is
organized in a 1D, 2D, or 3D array; the data type of the
elements in the array; and the byte size of the elements in the
array. The function returns a pointer to an object that stores
this information.

B. Data Mapping
The second step for DDR is to set up the mapping

between processes for sending and receiving data. Each
process in the distributed memory application may own
several chunks of data from the overall domain. In order to
properly process the data, we assume that each process will
require a single continuous subsection of data after data
redistribution. Therefore, DDR enables each process to send
data to other processes from many chunks, while receiving
data from other processes into one chunk.

An application sets up the data mapping using the
DDR_SetupDataMapping function. This function has eight
parameters: the rank number of the process calling the
function, the number of processes in the MPI application, the
number of chunks the process calling the function owns, an
array specifying the dimensions of each owned chunk, an
array specifying the offsets of each owned chunk into the
overall domain, the dimensions of the chunk the process
calling the function needs after data redistribution, the offset
of the needed chunk into the overall domain, and the DDR
descriptor object. Table I enumerates E1’s parameter values
for each process using the pseudocode from Algorithm 1.

Dimensions and offsets for sending and receiving data
chunks have a number of elements corresponding to the
problem type - [i] for 1D, [i,j] for 2D, and [i,j,k] for 3D.
Therefore the number of total elements in the sending
dimensions and offsets parameters must be equal to the
number of chunks owned prior to redistribution multiplied
by the number of dimensions in the problem type. The
number of elements in the receiving dimensions and offsets
parameters must be equal to the number of dimensions in the
problem type.

Figure 1. 2D data redistribution in a distributed memory application with four processes. Panel A – data layout before and after redistribution. The left grid
shows each process in the application owning two separate 8x1 chunks of data in the overall domain prior to data redistribution. The right grid shows each
process needing one continuous 4x4 chunk after redistribution in order to properly process the data. Panel B – data mapping for rank 0. This grid shows the

chunks of data owned by rank 0 that need to be sent to other ranks as well as the chunks of data rank 0 needs to receive from other ranks

12101210

 P1 P2 P3 P4 P5 P6 P7 P8
Rank 0 0 4 2 {[8,1],[8,1]} {[0,0],[0,4]} [4,4] [0,0] desc
Rank 1 1 4 2 {[8,1],[8,1]} {[0,1],[0,5]} [4,4] [4,0] desc
Rank 2 2 4 2 {[8,1],[8,1]} {[0,2],[0,6]} [4,4] [0,4] desc
Rank 3 3 4 2 {[8,1],[8,1]} {[0,3],[0,7]} [4,4] [4,4] desc

The chunks of data sent from each process should be

mutually exclusive and complete. This means that no two
processes should own the same data prior to redistribution
and that collectively the entire data domain should be owned
by some process. On the receiving end, however, data does
not need to be mutually exclusive or complete. This means
that multiple processes can receive overlapping data and that
there can be areas of the overall domain not received by any
process.

Internally, the DDR_SetupDataMapping function
creates a series of send and receive objects to be used with
MPI commands for data redistribution. Based on the send
and receive dimensions and offsets provided by each
process, a geometric overlap is computed to detect which
subsections of the data chunks should be sent to and received
from other processes. Even in applications where the data is
dynamic, this set up process is only required once as long as
the layout of data remains consistent.

C. Data Redistribution
The third and final step for redistributing data using DDR

is to actually exchange the data between processes in the
distributed memory application. A developer can trigger this
with a call to DDR_ReorganizeData, which takes four
parameters: the number of processes in the MPI application,
a buffer that has the data owned by the process calling the
function, a buffer where the needed data will be stored into,
and the DDR descriptor object.

Internally, the DDR_ReorganizeData function will

make calls to MPI_Alltoallw in order to exchange data
between processes. The number of MPI_Alltoallw calls is
equivalent to the maximum number of chunks that any one
process owns. MPI_Alltoallw is used (rather than
MPI_Alltoallv) since custom subarray types are needed to
describe multidimensional subsets of data. When dealing
with dynamic data, DDR_ReorganizeData can be called
each time processes own new data without needing to
initialize the library or set up the data mapping again. The
DDR library is available with permission from Argonne at
https://xgitlab.cels.anl.gov/fl/ddr/.

IV. USE CASES
Automating the redistribution of dynamic data in

distributed memory applications can have significant impact
on a number of authentic large-scale scientific and
engineering applications. This section highlights two use
cases that utilize DDR to improve efficiency and enable real-
time analysis with reduced storage needs. The first use case
surrounds efficiently loading ultra high-resolution 3D
medical images in parallel. The second use case surrounds
enabling real-time parallel visualization of HPC simulations
via in-transit streaming.

A. Parallel Visualization of 3D Medical Images
The medical images generated from Magnetic Resonance

Imaging (MRI), Computed Tomography (CT), and Positron
Emission Tomography (PET) are able to generate ultra high-
resolution three-dimensional data sets. These data sets are
typically generated by capturing a series of slices through the
medium being imaged. The slices are then saved in a
standard image format, such as TIFF. In order to visualize
the three-dimensional volume, the series of 2D images can
be stacked on top of each other and rendered in a process
known as direct volume rendering (DVR) [7,18]. Figure 2
depicts a 3D image of a primate tooth, showing both
individual 2D images stacked next to each other, and
visualized using DVR.

Unfortunately, GPUs have limited resources and

Figure 2. Visualization of a 3D TIFF stack representing a primate tooth. Left – individual 2D images stacked next to each other (only a small subset shown
for clarity). Middle – volume visualization using DVR of the 3D data set. Right – colormap used to render the primate tooth image data.

TABLE I. DDR_SETUPDATAMAPPING PARAMETER VALUES FOR E1.
PARAMETERS ARE ABBREVIATED – P1: RANK NUMBER, P2: NUMBER OF

PROCESSES, P3: NUMBER OF CHUNKS TO SEND, P4: ARRAY OF SEND CHUNK
DIMENSIONS, P5: ARRAY OF SEND CHUNK OFFSETS, P6: RECEIVE CHUNK

DIMENSIONS, P7: RECEIVE CHUNK OFFSETS, P8: DDR DESCRIPTOR.

12111211

therefore cannot render data sets that are too large to fit in
their graphics memory (e.g. a GPU with 4GB of usable
graphics memory could handle a maximum volume of
2048x2048x1024 1-byte ints or 1024x1024x1024 4-byte
floats). When the data set is too large for a single GPU to
render, parallel visualization techniques must be employed to
use multiple GPUs on multiple machines.

In order to perform efficient distributed memory DVR,
the entire volume is broken into equally sized boxes that are
as close to cubes as possible. This leads to each process only
needing data from a subset of images in the entire series. It
also leads to each process only needing a subset of pixels
from each image it needs data from. Unfortunately, common
2D image formats such as TIFF require a program to decode
and extract the entire image from file, even if the application
only needs the values of a few pixels. Reading and decoding
entire images on each process leads to many processes
loading the same image. It also leads to each process
throwing away much of the data it spends effort on to
extract.

To address the time-consuming and unnecessary
overheads, we have integrated our DDR library into the
loading of a series of TIFF images. The total number of
images in the TIFF series can be equally divided amongst the
processes regardless of what chunks of data each process
eventually needs. Our DDR library is then used to
automatically redistribute pixel data from the processes that
read and decoded each image to the processes that need
partial images to properly perform distributed memory DVR.
Using DDR results in each TIFF image only being read by
one process and avoids reading and decoding pixel data that
would just be thrown away.

Our collaborators have gathered ultra high-resolution
three-dimensional CT images on Argonne National
Laboratory’s Advanced Photon Source (APS). Two such
data sets are a 2028x2048x2048 volume of a primate tooth
stored as a series of 32-bit grayscale TIFF images, and a
4096x2048x4096 volume of a mouse brain stored as a series
of 8-bit grayscale TIFF images.

In order to perform benchmark tests to evaluate the
performance of DDR, we generated an artificial TIFF data
that had the largest resolution and bit-depth of our authentic
data sets. Therefore our artificial data set consisted of 4096
TIFF images, each with a resolution of 4096x2048 and 32-
bit grayscale color. This resulted in a volume with a total
data size of 128GB. We have utilized Argonne National
Laboratory’s visualization cluster, Cooley, to load the
artificial TIFF image series for parallel DVR. Cooley has
126 nodes, each node has two GPUs, and each GPU has
12GB of graphics memory. Therefore, a minimum of 11
GPUs (6 nodes) would be required to load the entire data set.
Cooley nodes are interconnected with a FDR Infiniband
CLOS network. Each node has a single 56 Gbps link
available for MPI communications.

To evaluate load time, we tested three different cases -
without DDR, using DDR where each process reads and
decodes images assigned from the series round-robin, and
using DDR where each process reads and decodes images
assigned from the series in consecutive chunks. The

difference between the latter two cases is that the round-
robin assignment requires each image to be a separate chunk
to redistribute with DDR, whereas consecutive images can
be grouped together into a single chunk to redistribute with
DDR. We ran these tests at four different scales - always
splitting the volume into an equal number of chunks in each
dimension – 33 (27) processes, 43 (64) processes, 53 (125)
processes, and 63 (216) processes. Each test was repeated 10
times.

Results, enumerated in Table II, show that using DDR
can significantly reduce the load time of a stack of TIFF
images. This is due to the reduction in overall image reads
needed by the application. These results mean that the
overhead associated with transmitting data between
processes is more than offset by the file reading efficiencies
gained. Using DDR with one consecutive chunk on 63 (216)
processes led to the maximum improvement in performance
– an average of 6.6 seconds compared to an average of 165.3
seconds when not using DDR (24.9X speed up).

Since we ran tests at various scales, we were able to
show that DDR achieves strong scaling. Figure 3 shows this
strong scaling of loading TIFF images in parallel. The two

Number of
Processes

No DDR DDR
(Round-Robin)

DDR
(Consecutive)

33 (27) 283.0 ± 1.7 sec 39.3 ± 0.2 sec 49.2 ± 0.2 sec
43 (64) 204.6 ± 1.2 sec 18.9 ± 0.2 sec 18.9 ± 0.1 sec
53 (125) 188.2 ± 1.2 sec 11.1 ± 0.1 sec 10.4 ± 0.1 sec
63 (216) 165.3 ± 5.9 sec 9.7 ± 0.4 sec 6.6 ± 0.0 sec

Figure 3. Strong scaling results for parallel TIFF loading. Using DDR
with many small chunks resulting from a round-robin distribution of file

reading and using DDR with one large chunk resulting from reading
consecutive files both exhibit strong scaling. However, DDR with one large

chunk results in maximum performance at larger scales.

TABLE II. TIFF LOAD TIME RESULTS.

12121212

data redistribution techniques we implemented (consecutive
and round-robin) are plotted along with a baseline case that
does not use DDR. Since we increased the number of
processes in a cubic fashion, the time is depicted with a log3
scale.

Beyond the comparison with the baseline case, we can
notice performance differences between the two techniques
for data redistribution. At small scale, the round-robin
method outperforms the consecutive method by 20%, while
this trend reverses at larger scales with the consecutive
approach 32% faster on 216 processes. This behavior can be
explained by the trade-off between network contention and
communication scheduling of each technique, as shown in
Table III. This table presents, for each number of processes
tested, the number of rounds (calls to MPI_Alltoallw) to
perform and the data size sent and received per process per
round. Using the consecutive approach, the data is
contiguous in memory requiring only one round with a large
amount of data per process (up to 4.3 GB). This creates
network contention on the single 56 Gbps link available per
node. When distributing images in a round-robin way, the
number of calls to MPI_Alltoallw is equal to the total
number of images divided by the number of processes.
However, despite the overhead of these consecutive
collective operations, the data size per process per round
remains constant and allow for full utilization of the network
bandwidth capacity. A strong scaling of our experiments
highly reduces the data size per process in the consecutive
method, optimizing at the same time the network bandwidth
usage. On the other hand, the round-robin method still pays
the price of the overhead of multiple calls of
MPI_Alltoallw with a larger number of processes.

B. In-Transit Streaming
Performing data analysis on intermediate results of a

running high-performance computing application has several
advantages. It produces an I/O cost savings by performing
analysis without the need to write to or read from disk. This
in turn enables a higher sampling rate for analysis, which can
elucidate complex behaviors occurring at fine temporal
resolution. Additionally, specialized hardware such as high-
bandwidth networks and GPUs can be leveraged for analysis
at the same time as the CPUs are computing simulation
results. Our second DDR use case focuses on in-transit
analysis, where data is streamed from a distributed memory
computational resource performing a simulation to a separate
distributed memory resource responsible for performing
analysis. Data is sent from M simulation ranks to N analysis
ranks. After receiving intermediate data, the analysis
resource leverages our library to redistribute data from how

it was laid out in the simulation application to how it needs
to be laid out for the application performing analysis.

We have used a simple Lattice Boltzmann method
(LBM) for computing fluid flows in a two-dimensional
space [3]. The density and velocity of the fluid is broken
into a regular grid of floating point values. In each iteration
of the simulation, every cell updates its value by simulating
particles streaming and collisions. Certain cells, including
the edges, are kept at fixed values. For our evaluation tests,
we place a barrier inside the domain that forces the fluid to
flow around it, creating more turbulent flow patterns.

The simulation application splits the data into slices to
distribute between ranks. This was done so as to minimize
the number of ranks each rank needed to exchange data with
during each iteration of the simulation. By using slices that
cover the entire width of the domain, each rank only needs to
communicate with two other ranks at most, the neighbors
with data directly above and below.

For analysis, we created a simple visualization
application, which would take the 2D array of floating point
values and apply a colormap in order to create an image. In
this use case, rotational velocity was chosen as the variable
of interest. The visualization enables users to quickly
determine flow patterns throughout the domain. We ran our
tests on Argonne National Laboratory’s visualization cluster,
Cooley, with 128 processes for the LBM simulation and 32
processes for the visualization application. While 32 is a
factor of 128, resulting in an equal number of simulation
ranks streaming data to each analysis rank, in-transit
streaming can be achieved without uniform mapping. Figure
4 depicts the M-to-N parallel data streaming for the LBM
fluid dynamics example.

The visual analysis application expects data to be split
into a grid that was as close to square as possible (given the
total number of analysis ranks). Therefore, the data being
received from the simulation was laid out in a different
manner than the analysis application required. Using our
DDR library ensures that data ends up in the proper location
for analysis. Additionally, the redistribution of data must
happen each time the analysis application receives new data
from the simulation. However, the mapping of what piece of
the overall domain each rank receives from the simulation

Number of
Processes

DDR (Consecutive) DDR (Round-Robin)
Rounds Data Size (MB) Rounds Data Size (MB)

33 (27) 1 4315.12 152 30.81
43 (64) 1 1920.00 64 31.50
53 (125) 1 1006.63 33 31.74
63 (216) 1 589.95 19 31.85

Figure 4. Parallel data streaming of 2D LBM data. This illustration shows
10 simulations ranks streaming data to 4 analysis ranks. The first two

analysis ranks receive data from 3 simulation ranks, whereas the last two
analysis ranks receive data from 2 simulation ranks.

TABLE III. COMMUNICATION SCHEDULING OF MPI_ALLTOALLW
ACCORDING TO THE DATA REDISTRIBUTION TECHNIQUE.

12131213

and what piece each rank needs to have in order to render the
proper visualization remains constant. Figure 5 shows how
data is automatically redistributed inside the analysis
application by our library.

Once data had been redistributed, the image could be
rendered using a blue-white-red colormap. Rendered images
were saved to disk rather than the raw data, which
compressed the data resulting in smaller data output. Table
IV shows results from running the 2D LBM fluid flow
simulation at different grid sizes. The simulation ran for
20000 iterations, outputting data every 100th iteration. Raw
data was saved to disk directly from a 4-byte float array.
Processed data was generated from the analysis application
that visualizes the streamed raw data and saves to disk as a
compressed JPEG image. The values in Table IV represent
one variable of interest (vorticity) for both raw and processed
data. However, many other variables (e.g. velocity, density,
etc.) are required for computation and could also be streamed
and rendered, achieving similar data compression.

While using visualization to render an image results in a
loss of data, it can yield a much higher output frequency
without needing more storage capacity. This tradeoff could
be beneficial in many cases, and may eventually become
necessary as we approach exascale computing. Additionally,
it is possible to do both raw data output and in-transit
analysis at different frequencies. For example, in our LBM
fluid flow use case, we could still output raw data every 100
iterations, but additionally stream data every 10 iterations for
visual analysis. This would increase temporal resolution 10-
fold, but only marginally increase data storage size.
Scientists could use the additional temporal information to
detect complex phenomena that were otherwise missed and
direct future simulations.

V. CONCLUSION
We have presented research on automating the

redistribution of dynamic data in distributed memory
applications. Our main contributions are the development of
a library that abstracts the necessary complexities for
redistributing data inside a distributed memory application
and highlighting the benefits of such a library through two
authentic scientific use cases. Experimental results show that
automated dynamic data redistribution can significantly
reduce file load time when dealing with three-dimensional
medical images and enable analysis applications to properly
handle and process real-time data from a running simulation.

To reduce the burden of integrating our library into
existing simulations or analysis applications, we have
consolidated our code into three public function calls.
Application developers simply need to initialize the library,
declare what data each process owns and what data each
process wants, then ask the library to exchange data between
processes. Since there is little coding required to integrate
automated data redistribution into existing simulations and
analysis tools, we foresee a wide range of large-scale
scientific and engineering applications benefiting from
integration of our DDR library. In addition to large-scale
visualization, such as the use cases highlighted in this paper,
DDR can be utilized in any distributed memory application
when loading data that was produced with a different layout
than the distribution needed for parallel processing.

While highly useful, DDR does have certain limitations.
First, it only supports 1D, 2D, or 3D arrays stored in
continuous memory with each element having a fixed size.
Second, the library requires additional memory usage to
store both the data each process owns prior to redistribution
and the data each process receives after redistribution.
Therefore, certain applications that are already memory
bound may need to utilize a greater number of nodes in an
HPC system.

For future work, we would like to extend the capabilities
of the DDR library. First, we would like to optimize the MPI
communication. Currently the redistribution is handled via
MPI_Alltoallw calls, which may not be most efficient
when data only needs to be sent and received from a subset
of other processes. By looking at how an application sets up
the data mapping, we could determine if data only needs to
be redistributed to a few neighboring processes and use
direct send and receive calls to improve efficiency. Finally,
we would like to add support for more data patterns, so
application developers could redistribute more complex
structures organized with arbitrary data layout.

ACKNOWLEDGMENT

We would like to thank our collaborators, Narayanan
Kasthuri (Argonne National Laboratory / University of
Chicago), Callum Ross (University of Chicago), and Carmen
Soriano (Argonne National Laboratory), who provided data
collected at Argonne National Laboratory’s APS. This
research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

Grid Dimensions Raw Data
Size

Processed
Data Size

Data
Reduction

 3238 x 1295 3.2 GB 19.9 MB 99.38%
 6476 x 2590 12.8 GB 61.0 MB 99.52%
12952 x 5180 51.2 GB 217.8 MB 99.57%
25904 x 10360 204.7 GB 830.9 MB 99.59%

Figure 5. Data redistribution by the analysis application. The DDR library
automatically reorganizes the data to fit the layout specified by the analysis
application. For the 2D LBM fluid flow example, incoming slices of data

were redistributed into nearly square rectangles.

TABLE IV. DATA SIZE ON DISK WITH AND WITHOUT IN-TRANSIT
STREAMING. DATA WAS SAVED 200 TIME STEPS DURING THE SIMULATION.

12141214

REFERENCES
[1] F. Affinito and C. Cavazzoni, “FFT data distribution in plane-waves

DFT codes. A case study from Quantum ESPRESSO,” Proceedings
of the 23rd European MPI Users' Group Meeting (EuroMPI 2016),
pp. 212, 2016.

[2] J. Ahrens, B. Geveci, and C. Law, “ParaView: An End-User Tool for
Large Data Visualization, Visualization Handbook,” Elsevier, 2005.

[3] S. Blair, C. Albing, A. Grund, and A. Jocksch, “Accelerating an MPI
Lattice Boltzmann code using OpenACC,” Proceedings of the Second
Workshop on Accelerator Programming using Directives (WACCPD
'15), article 3, 2015.

[4] B. Corrie and P. Mackerras, “Parallel volume rendering and data
coherence,” Proceedings of the 1993 symposium on Parallel
rendering (PRS '93), pp. 23-26, 1993.

[5] Department of Eneergy, “DOE High Performance Computing
Operational Review (HPCOR): Enabling data-driven scientific
discovery at DOE HPC facilities,” 2014.

[6] A. Esnard, N. Richart and O. Coulaud, “A Steering Environment for
Online Parallel Visualization of Legacy Parallel Simulations,”
Proceedings of the Tenth IEEE International Symposium on
Distributed Simulation and Real-Time Applications (DS-RT '06),
2006.

[7] K. A. Frenkel, “Volume rendering,” Communications of the ACM,
vol. 32, no. 4, pp. 426-435, April 1989.

[8] S. D. Kaushik, C.-H. Huang, R. W. Johnson, and P. Sadayappan, “An
approach to communication-efficient data redistribution,”
Proceedings of the 8th international conference on Supercomputing
(ICS '94), pp. 364-373, 1994.

[9] F. Kjolstad, T. Hoefler, and M. Snir, “Automatic datatype generation
and optimization,” Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming
(PPoPP '12), pp. 327-328, 2012.

[10] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments
(CLADE '08), pp. 15-24, 2008.

[11] D. Morozov and T. Peterka, “Block-Parallel data analysis with
DIY2,” Proceedings of the IEEE Symposium on Large Data Analysis
and Visualization (LDAV), 2016.

[12] P. O'Leary, J. Ahrens, S. Jourdain, S. Wittenburg, D. H. Rogers, and
M. Petersen, “Cinema image-based in situ analysis and visualization
of MPAS-ocean simulations,” Parallel Computing, vol. 55, pp. 43-48,
July 2016.

[13] B. Perry and M. Swany, “Improving MPI communication via data
type fission,” Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC '10), pp. 352-
355, 2010.

[14] S. Rizzi, M. Hereld, J. Insley, M. E. Papka, T. Uram, and V.
Vishwanath, “Performance modeling of vl3 volume rendering on
GPU-based clusters,” Proceedings of the 14th Eurographics
Symposium on Parallel Graphics and Visualization (PGV '14), pp.
65-72, 2014.

[15] N. Sharma, P. R. Panda, F. Catthoor, P. Raghavan, and T. Vander Aa,
“Array interleaving—An energy-efficient data layout
transformation,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 20, no. 3, article 44, June 2015.

[16] J. A. Stuart, C.-K. Chen, K.-L. Ma, and J. D. Owens, “Multi-GPU
volume rendering using MapReduce,” Proceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing (HPDC '10), pp. 841-848, 2010.

[17] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka,
“Topology-aware data movement and staging for I/O acceleration on
Blue Gene/P supercomputing systems,” Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC '11), article 19, 2011.

[18] L. Westover, “Interactive volume rendering,” Proceedings of the
1989 Chapel Hill workshop on Volume visualization (VVS '89), pp.
9-16, 1989.

[19] G. Zhang, J. Shu, W. Xue, and W. Zheng, “SLAS: An efficient
approach to scaling round-robin striped volumes,” ACM Transactions
on Storage (TOS), vol. 3, no. 1, article 3, March 2007.

12151215

