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Abstract—As dataset sizes increase, data analysis tasks in
high performance computing (HPC) are increasingly dependent
on sophisticated dataflows and out-of-core methods for efficient
system utilization. In addition, as HPC systems grow, memory
access and data sharing are becoming performance bottlenecks.
Cloud computing employs a data processing paradigm typically
built on a loosely connected group of low-cost computing nodes
without relying upon shared storage and/or memory. Apache
Spark is a popular engine for large-scale data analysis in the
cloud, which we have successfully deployed via job submission
scripts on production clusters.

In this paper, we describe common parallel analysis dataflows
for both Message Passing Interface (MPI) and cloud based
applications. We developed an effective benchmark to measure
the performance characteristics of these tasks using both types
of systems, specifically comparing MPI/C-based analyses with
Spark. The benchmark is a data processing pipeline represen-
tative of a typical analytics framework implemented using map-
reduce. In the case of Spark, we also consider whether language
plays a role by writing tests using both Python and Scala, a
language built on the Java Virtual Machine (JVM). We include
performance results from two large systems at Argonne National
Laboratory including THETA, a Cray XC40 supercomputer on
which our experiments run with 65,536 cores (1024 nodes with
64 cores each). The results of our experiments are discussed
in the context of their applicability to future HPC architectures.
Beyond understanding performance, our work demonstrates that
technologies such as Spark, while typically aimed at multi-tenant
cloud-based environments, show promise for data analysis needs
in a traditional clustering/supercomputing environment.

I. INTRODUCTION

In this paper, we are motivated to understand and articulate
the characteristics of cloud-based dataflow processing in the
context of high-performance data analysis tasks since large
HPC systems are beginning to resemble high performance
clouds. As such, being able to schedule and run cloud-
based data analysis software allows simulations to perform
co- or post-processing with a relatively straightforward com-
putational model (map/reduce) based on functional program-
ming. In order to compare the performance and deployment
challenges of such applications with traditional MPI-based
solutions, we have developed a data processing benchmark
using both MPI and the Apache Spark [1] cluster-computing
framework (hereafter referred to as Spark), that we execute
on two supercomputers. We compare performance of this
benchmark by measuring strong and weak scaling. For Spark,

we also examine performance of two supported languages:
Python and Scala (the primary language used to author Spark
itself). The purpose of these comparisons is not to make a
value judgment about which system is best but to demonstrate
whether Spark is viable in a supercomputing environment.
We envision many scenarios where Spark can be incorporated
in mixed MPI/Spark environments (e.g. simulations) where
an MPI-based computation could be co-scheduled with a
Spark-based application, thereby allowing popular higher-level
Python/Java/Scala frameworks to be incorporated into super-
computing applications. To keep our focus narrow, we avoid
introducing additional layers, such as data loading and out-of-
core analyses, though these will be of great interest in future
work. The aim of this work is to assess the out-of-box Spark
experience on computational clusters. We therefore made no
changes to the Spark runtime itself, and limit customizations
to only the key Spark properties necessary to utilize the cloud
computing framework on HPC systems.

We use the term dataflow to describe a set of operations
for the creation, processing and transformation of a given
dataset. This differs from a related computational approach
from the 1980s [2], in which dataflow is a fine-grain parallel
architecture focused on triggering instructions using tokens.
Tokens arrive at instruction nodes, which cause an instruction
to fire, resulting in tokens that can be passed to subsequent in-
structions. Nor should the term be confused with the compiler
principle of data-flow analysis, which is used to perform vari-
ous code analyses and optimizations, including but not limited
to dead-code elimination, common subexpression elimination,
and loop unrolling.

While our efforts do not consider every type of MPI
application, such as tightly-coupled simulations, many data-
intensive programs built on MPI follow a typical map-reduce
pattern when performing multistage analyses, in which data
is first loaded or generated, then one or more computations
are performed on this data (possibly transforming it in the
process), and finally a global operation is utilized to obtain
a result. This multistage dataflow is commonly found in
many applications. Some recent papers points to increased
use of map-reduce in large-scale scientific and technical
computing to support distributed scientific calculations using
a single, parallel map/reduce job that were previously done
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with separate one-node jobs [3]; streaming data analysis of
streaming scientific (e.g. sensor) and business (e.g. financial
markets) data [4]; and large-scale data science and machine
learning. [5].

Consider, for example, an image processing application
for feature extraction. This program would load the set of
images to be analyzed, transform this data by color space, and
perform an in-place map operation on the pixels to identify
one or more features. Finally, the reduce operation gathers
information about the presence or absence of features across
all images. Our benchmark implements a similar multistage
set of operations, abstracting some details while ensuring that
the actual workload remains realistic and reproducible in real-
world situations. It is described in detail in Section IV.

The Spark dataflow creates a resilient distributed dataset
(RDD) that can be persisted in memory and/or on disk
for the lifetime of the computation. These RDDs can be
quickly transformed into new RDDs using the map operation
(the notion of mapping originates in functional programming
languages [6]). An earlier system, Hadoop [7], included the
map/reduce framework but focused on storage, which is not
absolutely required in every meaningful dataflow (per the
cited examples above). Spark also supports map/reduce but
is focused on objects in memory which can be persisted on
demand or when available memory is exhausted, which is
attractive for out-of-core memory workflows.

In addition to understanding how cloud computing frame-
works compare with MPI/C, we wanted to understand whether
the specific languages used by the cloud frameworks affect
overall performance. The two main choices supported by
Spark and likely to be of interest to HPC developers are
Python, a dynamic language already popular in computational
and data science, and Scala, an object-functional JVM lan-
guage. We are encouraged by the results we are seeing in
both of these approaches, and we will speak more generally to
their affordances and constraints in our detailed performance
analysis and conclusions.

Lastly, we are also intrigued by cloud computing frame-
works for software engineering reasons. Python and Java
are used by a large number of data analysts and machine
learning researchers and feature many libraries that enable this
work. The availability of cloud computing on HPC systems
without making a significant compromise to performance will
help enable more of these practitioners to maximally utilize
available resources. The experiments presented in this work
are among the largest studies, both in terms of number of
nodes and total core count, and we believe they can be used
to help understand and improve cloud computing performance
in large-scale supercomputing systems.

Our work to create general-purpose job submission scripts
(see III-A) allows us to create multiple Spark networks of
the appropriate size to best enable optimal performance of
application-specific code. We currently utilize our own job
scheduler, but these scripts can be ported (easily) to other
popular job schedulers, enabling Spark applications to run on
other HPC systems.

In sum, our paper focuses on the following aspects:
• Comparison of traditional MPI data processing with

cloud-computing frameworks
• Real scalability using up to 65,536 cores on a leadership-

class HPC system
• Comparison between Python or Scala Spark versions and

MPI/C version
• Identifying and addressing Spark performance overheads
• Demonstration of portability between two significantly

different leadership class systems

II. RELATED WORK

Bringing cloud-based frameworks such as Spark to su-
percomputing frameworks is a subject of increased interest
in high-performance parallel/distributed computing environ-
ments. We consider related work on benchmarking (the most
closely related papers to our study), challenges of Spark de-
velopment, scientific applications using Spark, tuning-related
issues, and numerical libraries used in our study for the Python
and Scala versions.

A. Benchmarks

Chiamov et al [8] described their experiences porting Spark
to large-scale HPC systems. They observed that I/O is the main
bottleneck (using Lustre metadata) on supercomputers for this
type of High Performance Data Analytics (HPDA) workload.
To mitigate that, they developed a file pooling layer and ran
experiments using NVRAM buffers (comparable to the on-
node SSDs found on THETA, one of our testbeds). Some key
takeaways from their work include using local storage for the
shuffle stage, which improved scalability in their problem to
10,000 cores. This work also evaluated a configuration with
storage attached closer to compute nodes for I/O acceleration.
Our paper is mostly focused on large, generated in-core data
sets, but we are also evaluating I/O from the shared disk and
experienced similar results.

The authors uncovered several scaling issues on HPC sys-
tems, which would likely be worse on lower-performing clus-
ters. Fixing the YARN resource manager and improving the
block management in the shuffle block manager will benefit
performance. Our experiments have mostly been confined to
being careful with persistence schemes, especially with how
data are serialized (on the Java side in particular, where you
want to avoid serializing complex object hierarchies). Our
Scala experiments do take advantage of said serialization,
which probably explains some of the overheads we are seeing
in our performance charts.

Gittens et al [9] done a study comparing MPI/C++ and
Spark Versions. In this work, the authors developed three
different parallel versions of matrix factorizations and apply
them to TB (terabyte) size data sets. Their testbed is the
Cray XC40 with up to 1600 nodes. Initial findings confirm
a performance gap between MPI/C++ and Spark—a gap that
we also observe in our experiments. The performance gaps are
attributable to task-related overheads that would not be present
in MPI, which creates and schedules its tasks at compile time



in typical computations. Similar to Chiamov et al, serialization
can play a major role in Spark, even when data are persisted to
RAM. Our study is a bit more focused on strong/weak scaling
in the presence of these overheads.

Ringenburg [10] considers performance characteristics of
HPDA workloads on a Cray XC40 system. The authors
analyze the log and workload of two publicly available bench-
marks: Intel’s HiBench 4.0 Suite and a CX matrix decompo-
sition algorithm. The CX matrix decomposition experiments
use up to 960 cores. The presentation provides guidelines
for improving performance on this particular Cray machine,
including tuning of various Java Virtual Machine parameters,
e.g. garbage collection threads, etc. The platform was Spark
1.5 with no local storage available. Our results are based
on relatively recent Spark releases (discussed in experimental
setup, section IV-B).

Marcu et al [11] et al and Garcia et al [12] propose a
comparison between Spark and Flink. Marcu et al introduce
a methodology based on a set of benchmarks (word count,
grep, tera sort, K-means, page rank, connected components,
many of which are example programs in the Spark distribution)
ran on up to 100 nodes to understand performance in this
type of frameworks. Garcia et al shows the results of three
ML algorithms running on 10 nodes, 16 cores/node. Our
benchmark, while synthetic in nature, runs at much higher
node and cores per node counts.

Chunduri et al [13] discuss run-to-run variability on THETA
(one of the supercomputers we performed our study in this
paper) a Cray XC40 system, where the authors observed that
the MPI AllReduce on small message sizes appears to have
the highest variability due to inter-job contention. We have
also observed about 15% variability in our experiments. In this
paper, we focus on the general scaling behavior, and our Spark
benchmarks indicate other overheads playing an even more
dominant role, especially when it comes to TCP connections
(see Section II-D), we leave the quantification of variability in
our future study.

B. Challenges of Spark Deployment

Armbrust et al [14] present feedback from a company
deploying Spark to various organizations. This paper presents
some of the main difficulties encountered such as large-scale
I/O or memory management. The authors developed some
memory management features as well as a custom network
module. To make Spark more accessible to non-experts, they
also wrote an API based on data frames (like in Python or R).
Our paper focuses on the Spark RDD, which is the underlying
fabric used to implement data frames and data sets.

Tous et al [15] discuss an optimized deployment of Spark on
MareNostrum, the BSC’s supercomputer. The authors devel-
oped a framework to automate the usage of Spark. They also
provide guidelines on using Spark on this system (number of
workers, size of the workers). As part of our work, we devel-
oped generalized job submission scripts, discussed in detail in
Section III-B, which allow the Spark daemons to be launched
in a generalized way (on two of our clusters), followed by

launching application-specific code in Spark (which acts as a
container).

C. Scientific Applications

Yan et al [16] explored the scalability of Spark on a set
of seismic data processing algorithms. To do so, the authors
propose to change the way data is given to Spark (templates
for seismic data sets).

Souza et al [17] present a scalability analysis of Spark
through a synthetic implementation of a scientific workflow
based on a real use-case in oil and gas domains. They
processed 330 GB of data on a 936-cores HPC cluster. The
application is not written for Spark. Instead, they used a
”black-box” approach (run external program with Spark). One
of the outcomes is that the task duration has a better scalability
than the number of tasks (typical strong versus weak scaling).

D. Java and Big Data Processing Tools on HPC Systems

Nowicki et al [18] present a library for Java called PCJ,
whose purpose is to easily allow parallel computation. This
library is evaluated on a KNL-based platform and the authors
come to the conclusion that Java can run successfully on
architectures designed for parallelism. In [19], the authors
also targets the Intel KNL architecture and describe how they
evaluated Hadoop on it through a custom plugin. Again, one
of the conclusions is that it’s feasible to leverage intra-node
parallelism with Big Data processing frameworks.

Jacobsen et al [20] describes the SLURM implementation
on large-scale Cray systems, including a KNL system similar
to THETA. In particular, the team found the need for Linux
kernel tuning to increase max TCP connections to address
SYN (connection) backlog. As Spark itself relies on a sig-
nificant number of connections from executor nodes to the
driver, we see some evidence of connection issues in our own
experiments, resulting in significant overheads. We have not
done these Linux kernel level tunings in our production cluster
but hope to address the issue in future work.

III. ABOUT APACHE SPARK

Spark is a general purpose cluster computing system similar
to Hadoop. It provides a new data abstraction that facilitates
fast sharing and history-based resilience, as well as an ex-
panded set of data transformations and actions, in addition to
traditional map-reduce. In addition, Spark provides a stream-
ing processing abstraction as well as bindings to common
processing languages such as GraphX, R, and MLlib.

When a dataset is loaded by Spark, it becomes an immutable
Resilient Distributed Data (RDD) collection. This abstraction
allows the data to be treated as a whole when in fact it may
be partitioned across many nodes of a distributed system.
Each partition also contains the history of transformations with
which it was created, called a lineage, with which the partition
can be recomputed if necessary, such as in the case of a node
failure. This lineage is a more compact form of resiliency
compared to data duplication as utilized by Hadoop.



Spark is lazy, and this philosophy underlies much of its
design. Computations will not be performed until their result
is requested and data will not be consolidated or repartitioned
unless explicitly requested. In order to facilitate flexible and
generalizable task parallelism RDDs are read-only data struc-
tures and therefore lazy evaluation can result in faster overall
run times since it avoids unnecessary memory allocation. In
contrast, MPI/C computations can be carried out in place and
therefore the notion of deferring a computation is not relevant.

An RDD is split into partitions whose size is at minimum
the size of a block on whatever storage device is being utilized.
Each partition is further divided into records, typically a single
line for text processing, or an entire binary file for binary data.
Binary data records can be explicitly specified. Large binary
files will be broken down into multiple partitions only if these
partitions can themselves be divided into records.

Spark distributes the blocks/data among the workers, if it
does at all. Spark supports fault tolerance among the workers.
For example, if a worker is lost, processing can continue.
Although node failure rates are expected to be low in small-
to-medium size clusters, larger clusters are more likely to see
single node failures, thus making Spark potentially compelling
even in highly-reliable supercomputing clusters. As is well-
known in the MPI community, attaining such functional-
ity requires application-specific checkpointing and/or a fault-
tolerant runtime, both of which incur significant overheads.
With Spark, the transparent support for fault tolerance allows
the application code to be written without such overheads (at
least in theory). While not the subject of this paper, we are
intrigued by the potential to look at performance in future
work, especially in the presence of one or two node failures.

RDDs can be persisted or cached in memory, on disk, a
combination of the two, or off heap. In our experiments, we
focus on RDDs that persist to RAM. We also have designed
our experiments to consider out-of-core persistence strategies
and spill rates (which we can simulate by multiplying the
number of blocks, the number of partitions, or both). Partitions
that do not fit in memory will be recomputed from their
history when they are needed. This recomputation is possible
because RDDs, which include the data lineage, are basically
Scala immutable collections and are manipulated using map
(to create a new RDD) and reduce (to gather results from nodes
and apply a function between all pairs). In our benchmark, we
are primarily considering mapping dataflow performance but
also report initial results on reduce performance.

There are many ways to launch Spark. In cloud environ-
ments, Mesos or YARN are popular cluster managers. Spark,
however, also provides a built-in standalone deploy mode,
which is achieved with a collection of start/stop scripts. These
are easy to deploy in our job scheduling environment, where
a set of nodes is allocated to the user for a time duration
requested at job submission. When our job starts, we launch
Spark in the standalone deploy mode, with one Spark master
on one node and one Spark worker on each node of our
allocation, and submit our benchmark script to the Spark
master.

A. Submitting Spark Jobs on our Clusters

The supercomputers we use for this paper schedule and
execute compute jobs via a job scheduler. A user can request a
specific number of compute nodes and a fixed maximum wall
clock time for a compute job given as a binary or a script.
Such job will then wait in the queue and get launched when
the requested compute resources become available. When the
job starts, the user, in a job script, typically launches the
executable through computing resource specific methods, such
as mpirun on COOLEY or aprun on THETA. We will discuss
our computing resources in detail in Section IV-A.

In collaboration with Argonne National Laboratory, We
have developed a set of scripts that automate the job sub-
mission procedure, where the main user facing interface is a
bash script.

B. Starting the Spark Framework

In order to run Spark jobs on our two HPC system we
need to first start up the framework. This entails specification
of the size of the desired cloud-computing cluster as well as
the internal URL from which it can be accessed. Since it is
designed to work with a general set of nodes accessible via
SSH, we use the built-in Spark standalone cluster mode in our
study. All of this is automated in our scripts.

On our first test-bed, we find that the Spark built-in scripts,
which uses SSH, work well by default, once we overwrite
the SSH command in a bash function and provide essential
environment variables through SSH invocation.

On the second test-bed, due to the large amount of nodes,
we use the Cray recommended command aprun to launch
the Spark master and workers.

C. Running the Spark Job

Once Spark is started in cluster mode, we now have the
equivalent of a local cloud, albeit ephemeral, that we can use to
run one or more Spark jobs. We use the environment variable
passed through our modified SSH command or the aprun
to specify the Spark master URI, and use the Spark built-in
bin/spark-submit on the Spark master node to submit a
Python or Java/Scala job for execution on the cluster. These
are also automated in our scripts.

IV. BENCHMARKING

We’ve developed comprehensive benchmark tests for each
language (MPI/C, Python, and Scala) designed to work in
parallel on large, distributed array data structures. From the
user’s point of view these data structures are continuous, but
on the system they are distributed across all available nodes as
blocks, and the size of each block can be explicitly specified.
Smaller blocks have the advantage of being able to be rapidly
transferred between nodes while larger blocks require less
overhead and can therefore be processed more efficiently. The
data can be loaded from disk, from the network, or generated
directly on the node itself by the application.

Our benchmarks are designed to emulate a typical image
analysis dataflow based on the map-reduce paradigm, which



consists of four stages: data loading/generation, then some
number of operations executed in parallel on that data, and
finally a global reduction to obtain a final result. Each stage
can be timed separately in order to more precisely analyze
overall execution time.

The following parameters apply to all of the benchmarks:
• blocks: Number of blocks to be created
• block size: Basic block size
• nodes: Number of nodes actually present in the cluster
• cores: Number of cores per node in the cluster

A. Benchmark Machines

1) COOLEY: Our first test-bed is a mid-size cluster at
the Argonne Leadership Computing Facility (ALCF), aimed
primarily but not exclusively at support high-performance
visualization processing and analytics. It has a total of 126
compute nodes. Each node has two 2.4 GHz Intel Haswell
E5-2620 v3 processors (6 cores per CPU, 12 cores total), with
384GB RAM. This system uses FDR Infiniband interconnect.

2) THETA: The second test-bed is a large-scale Cray XC40
supercomputer with only a single compute node type: the
Intel Knights Landing 7230 processors. It features 16 GiB
of MCDRAM and 192 GiB of DDR4 per node. Each node
has one 1.3 GHz Intel Xeon Phi 7230 processor with 64
cores, and each core has 4 simultaneous multhreading (SMT)
hardware threads available. At the time of writing, the platform
has a total of 4392 compute nodes (281,088 cores). For our
experiments, we were able to use 1024 of these nodes. The
Cray Aries network is the high-speed interconnect used on this
system. This network is a 3-level Dragonfly topology.

B. Benchmark Setup

We study the strong and weak scaling behavior of our three
code bases on COOLEY and THETA using simple, but still
realistic, parameters for our tests. Though we have developed
a comprehensive benchmark, in this work we only compare
performance of data generated by a simulation or other analy-
sis, not data loaded from disk. Another affordance of Spark is
its innate support for of out-of-core execution implicitly and by
default using various strategies to cache to RAM, to disk, and
even combinations of the two. This is something that is simply
not possible in traditional ahead-of-time compiled languages
such as C without essentially reproducing many of the ideas
of the JVM, building a memory-management framework, or
using memory caching services such as memcached. While
our benchmark has been designed to allow for data spilling
by adjusting any of the benchmark parameters (blocks, block
size, or the partition multiplier), the tests presented in this work
deliberately avoid this in order to keep the focus narrowed on
the difference between cloud computing and MPI/C without
the additional layers required to facilitate out-of-core memory
management.

All of our Spark benchmarks are performed with the latest
release of Apache Spark version 2.3.2. As we focus on the
out-of-box experience of Spark usage on supercomputers, we
use the Spark binary package pre-built for Apache Hadoop 2.7

and later, directly downloaded from Spark website. On both
systems we use Scala version 2.11.8.

On COOLEY, we used the server Java SE version
1.8.0_60 and Python version 3.5.1 using Anaconda 4.0.0
(64-bit), and the Intel C Compiler (icc) version 18.0.3. On
THETA, we used the Java SE version 1.8.0_51. Intel Dis-
tribution for Python version 3.5.2 and the Intel C compiler
(icc) 18.0.0.

Our benchmark makes use of NumPy [21], which is one
of the most commonly used linear algebra/numerical analysis
libraries in Python. This library allows us to work with large-
dimension array structures and perform the benchmark opera-
tion on dense vectors as efficiently as possible in an interpreted
language. The NumPy design has also been making its way
to other frameworks, including the Breeze Scala library [22]
that we also used in our Scala version of the performance
benchmark.

Both NumPy and Breeze are needed, simply put, because
the native array support in Python and Scala lacks the ability to
work with dense vector and matrix structures, especially when
it comes to supporting higher order operations associated with
linear algebra.

On the other hand, for our MPI/C implementation, we use
a straightforward loop with in-place operations for the linear
algebra. As the actual computation performed in the bench-
mark is mostly limited by the memory bandwidth, we expect
this setup accurately reflects the typical scaling behavior.

We perform benchmark on COOLEY using 1 to 96 nodes,
while using 128 to 1,024 nodes on THETA. In the strong
scaling study, we fix the number of total blocks to be 9,216 on
COOLEY, and 131,072 on THETA. In the weak scaling study,
we fix the number of blocks per node to be 768 on COOLEY,
and 512 on THETA. In both cases, the block size is kept to
be one, meaning 220 vectors, each with three IEEE double
precision floating point elements. The C/MPI implementation
uses 12 ranks per COOLEY node, and 128 ranks per THETA
node. Both Scala and Python implementations partition their
RDD in 12 parts per COOLEY node, and 256 parts per THETA
node.

C. Spark Parameters

Since we are executing tests that involve a much larger
number of nodes and cores than those conducted on COOLEY,
we had to disable the Spark heartbeat because it overwhelmed
the network with hundreds of TCP/IP connections per second
and significantly disturbed performance. See Section II-D
for an explanation of potential TCP/IP issues others have
experienced in large-scale Cray systems similar to ours. We
have also significantly increased Spark parameters related the
network timeout, in order to eliminate the false error reports
of network timeout, where in fact the expensive network RPC
is flooding the Linux TCP/IP stack due to the extreme high
node count.

We have increased the Spark driver memory and executor
memory, according to our machine resources. We also enabled
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Fig. 2. Strong scaling results for COOLEY (log scale).

parallel garbage collector (GC) in JVM with limited amount
of GC threads, 2 on COOLEY and 8 on THETA.

V. RESULTS

Now we present the results of our large benchmark runs
on COOLEY and THETA. On COOLEY we used up to 1,152
cores (96 12-core nodes), and on THETA we executed much
larger runs, using up to 65,536 cores (1024 64-core nodes).
Our experiments were conducted for both strong and weak
scaling on each system. Weak scaling, the simplest type of
performance comparison, is when the size of the dataset to
be analyzed grows proportionally to the size of the system
used for its analysis. Ideal weak scaling should be level and
independent of the number of cores. Strong scaling attempts
to solve a large problem more quickly by keeping the input
data size constant while increasing the resources used for its
analysis. Ideal strong scaling should be inversely proportional
to the number of cores.

In addition, we performed a few tests on each system,
probing the throughput and reliability of the interconnect. We
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expect Spark is prone to network issues and thread contention.
In contrast to the execution model of MPI, the standalone
scheduler in Spark requires message passing in order to
actively manage jobs among available workers.

Our benchmark results presented compare dataflow execu-
tion times for MPI/C, Spark Python, and Spark Scala. For
each of the tests, we provide a figure comparing overall
performance. We also show the trend of an ideal scaling (not
based on a particular value).

A. COOLEY and THETA Networking Overheads

The MPI libraries on both COOLEY and THETA use API
that directly uses the interconnect fabric, the InfiniBand and
the Aries, respectively. Apache Spark communicates at the
TCP layer over virtual Ethernet adapters that runs on top of
interconnect fabric. This negatively affects the communication
performance of Apache Spark, because all the traffic is going
through the normal TCP/IP stack, which requires system calls,
memory copies, and network protocols, to run on the CPU, in



contrast to MPI that sends traffic dirctly to the interconnect
hardware. Similar observations can be found in reference [20].

To investigate further, we tested point-to-point throughput
over the network between two nodes using the iperf3 [23]
application. On COOLEY, the iperf3 reaches maximum
about 16 Gbits/sec using a single connection, which is nearly
one third of the MPI point-to-point bandwidth at about 6
GB/sec. On THETA, the iperf3 reaches maximum about 14
Gbits/sec using a single connection, which is less than one
fifth of the MPI point-to-point bandwidth at about 8 GB/sec.

As Spark uses the open-source Netty [24] communication li-
brary framework, which uses the Java New IO (NIO) libraries,
we wrote a simple benchmarking code using Netty directly to
check the network reliability.

Our Netty benchmark shows that the communication on
THETA is consistently worse than COOLEY. Establishing 8192
connections on COOLEY takes 0.5 seconds, while on THETA
it takes 2 to 3 seconds. These overheads will affect Apache
Spark, simply because its architecture requires a large number
of connections to be made to the driver (master). The maxi-
mum response time among these connections is about 20± 5
milliseconds on COOLEY, and 45±10 milliseconds on THETA.
In addition, on THETA, among 16 different runs, there are 5
cases where 1 connection failed out of 8192 connections.

The intermittent connection failures, on the one hand, rein-
force the use case of Spark, which has builtin fault tolerance
and was able to complete all runs successfully in the presence
of failures (which only occurred at high node counts). On the
other hand, it increases the run time of Apache Spark.

In addition to the network, each CPU core on THETA
has lower clock frequency than the CPU cores on COOLEY,
1.3 GHz versus 2.4 GHz, respectively, which contributes
to poor TCP performance on THETA, as the data sending
over the TCP/IP stack requires CPU. Spark potentially has
additional performance overhead, because the lower single
core performance could worsen thread contention for the
Spark scheduler. The combination of these issues (unoptimized
TCP/IP, point-to-point bandwidth, and connection failures at
high node counts) explains the overheads we see in our results.
Nevertheless, we are encouraged that once the Spark network
is bootstrapped, the results are encouraging.

B. COOLEY

The benchmarks conducted on COOLEY, a middle-tier su-
percomputer, used up to 1,152 cores (96 12-core nodes) and
required no customization of the Spark framework. For both
weak and strong scaling, the results of utilizing cloud com-
puting are highly comparable to those of traditional MPI/C.
This suggests the use of such frameworks could be valuable
and immediately useful for some research.

a) Weak Scaling: Figure 1 shows the overall weak scal-
ing comparison of MPI/C with Spark-based Python and Spark-
based Scala tests. We can notice that the Python version is
about 50% slower than the MPI/C version, while the Scala
version is about 3X slower. The overall time is mostly flat, in-
dicating a good weak scaling from 12 cores up to 1,152 cores.

While the difference between MPI/C and Spark is explained
in the previous subsection, the performance gap between the
Scala and the Python versions is more surprising. We postulate
that the extra overhead in the PySpark serialization and RDD
context switches could be the potential cause of the reversed
performance, and we will investigate this behavior further in
our future study.

b) Strong Scaling: Figure 2 shows our strong scaling
experiment comparing MPI/C with Spark-based Python and
Spark-based Scala tests on the same platform. The figures
utilize a logarithmic scale to more clearly show the time
elapsed since the timings become faster inversely proportional
to the core counts for this set of tests. We observed that the
speed of the Python implementation approaches the MPI/C
version from around 24 to 192 cores, while the Scala version
stays about 2X the Python version. This result is correlated
with our observations on weak scaling experiments. While the
MPI/C scales extremely well, the Spark implementations, es-
pecially the Python code, start to show some level of departure
from ideal strong scaling above 384 cores. Nevertheless, those
results are still reasonable and show how a data processing tool
can take advantage of a HPC system.

C. THETA

Next we present results from our benchmark runs on
THETA, a much larger system than COOLEY. On THETA
we start our scaling study with 8192 cores (128 64-core
nodes), the smallest size allocation for the default queue
of the job manager on this system. The following results
show a more significant difference in overall performance
for which we suspect network overhead may be responsible
with the increased parallelization, an indication we observe on
COOLEY jobs using more than 768 cores. Another suggestion
of these performance differences being caused by networking
issues was the necessity to disable the Spark heartbeat which
otherwise overwhelmed the system as mentioned in IV-C.

a) Weak Scaling: Figure 3 shows the overall weak scal-
ing comparison of MPI/C with Spark-based Python and Spark-
based Scala tests. The overall weak scaling performance with
increasing node counts seems to be similar in how it scales for
both Spark and MPI/C, though the Spark runs are about 30X
longer than MPI/C. The figure utilizes a logarithmic scale for
the axes to depict the similar scaling behaviors: instead of the
ideal scaling, which should be flat, the timing clearly increases
linearly for all three benchmarks. We expect these networking
issues can be resolved. At the moment it means that larger
systems such as the one we use here might require further
tuning (e.g. TCP/IP and possibly further JVM tuning) to offer
a satisfactory scalability.

b) Strong Scaling: The strong scaling experiments car-
ried out on THETA are depicted in Figure 4. Again, the figure
utilizes a logarithmic scale as in the weak scaling figure above
and shows similarly poor scaling for the three benchmarks, all
of which depart from ideal scaling, which should be inversely
proportional to the number of cores. Similarly to the weak
scaling tests, the Spark-based runs are around 30X slower than



the MPI/C-based runs. Unlike experiments on COOLEY, we
can notice here that both versions of our Spark benchmark
performs the same way.

VI. SOURCE CODE

The source code for all of our work can be downloaded
from GitHub. The Python, Scala, and MPI benchmark
codes described in this paper can be found in our
GitHub organization, https://github.com/SparkHPC/,
under the repositories, simplemap-spark-python,
simplemap-spark-scala, and simplemap-mpi-c.
This GitHub organization also contains the framework startup
scripts, and job launching scripts described in Section III-B
and III-A, under the repository, Spark_Job. We welcome
contributions that enable this framework to be used with
other machines. Our run scripts for both machines and results
are under the repository, spark-benchmark-study. This
GitHub organization page also contains links to related work,
including demonstrations of how to use Apache Spark with
Jupyter Python notebooks (other work in progress by our
team).

VII. DISCUSSION AND FUTURE WORK

This work is the beginning of a more detailed understanding
of the performance of Apache Spark for HPC dataflows,
which have a longstanding tradition of being done in MPI
C/C++. Spark dataflows can employ linear algebra libraries
like NumPy (for Python) and Breeze (for Scala) aimed at
providing near-native C performance. Related work has al-
ready shown that MPI C/C++ continues to perform better
than variuos alternatives, which therefore helped to focus our
efforts on understanding what is possible in Python and Scala
(and Java by association). Executing Spark computations on
thousands of nodes using tens of thousands of cores may
provide a plausible addition to the currently available tools
on these systems. And overheads aside, operating at scale
on supercomputers makes cloud-based frameworks a viable
approach for co-processing and/or postprocessing of more
optimized “native” computations, such as simulations, etc.
Although overheads associated with Java and Apache Spark
are significant, the results show that scaling to a large number
of nodes and core counts is not only possible but a promising
direction.

We have been successful to overcome many challenges
to get Spark running on leadership class supercomputers,
e.g. THETA. With an eye to future leadership systems, work
remains to be done, especially when it comes to ameliorating
the effects of Spark overheads and ensuring full use of HPC
architectures. Alleviating these overheads will require vendor
commitments to tune Java for large core counts and Apache
Spark for a large number of connections to the master node.
The code, scripts, and results we’ve shared will be of value to
researchers who want to evaluate the efficacy of cloud-based
frameworks on new supercomputing systems.
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