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BACKGROUND 

I. Motivation 

 The objective of this research was to explore the use of remote memory in performing collective I/O operations. The 
motivation for pursuing this project was driven by two factors. First, there has been a steady growth in the research of 
disaggregated memory as a means of expanding the conventional memory hierarchy to include a remote level. Research in this 
area has shown that page-swapping to remote memory typically outperforms a traditional architecture where pages are swapped 
to disk [1], and that a disaggregated architecture can provide a significant performance-per-dollar improvement [2]. Second, 
similar research has explored the use of a SSD-based burst buffer as a persistent storage layer where data is staged before 
asynchronously being transferring to a parallel file system in the background [3]. This new hierarchical storage system 
outperformed writing directly to the file system in every experiment. Similarly, this project sought to improve I/O performance by 
using a RAM area network as an aggregation layer for performing two-phase collective I/O operations. 

II.  Collective Operations 

 Collective operations improve I/O performance by merging the requests of 
ranks in a parallel application (see Fig. 1). Typically, these operations are performed 
in two phases. In the first phase, a subset of ranks are chosen to serve as aggregators 
where non-sequential data from each rank is organized into contiguous portions of 
the file. In the second phase, these contiguous portions are written to the file system. 
The data is moved over several iterations called rounds. In each round, specific 
chunks of the file are organized into the aggregators. Ranks must remain in sync to 
ensure the correct data is written to the aggregator at each round. This 
synchronization among the ranks incurs a cost which represents a significant portion 
of the overall execution time of the transfer. The crux of this research investigates the 
use of remote memory to minimize this synchronization cost and by extension 
improve overall I/O performance. 

DESIGN AND IMPLEMENTATION 

I. Design Overview 

 The initial objective of the research was to create a simple working implementation of the two-phase collective I/O 
operations using a RAM area network as an aggregation layer. The RAM area network for this project consisted of three Kove 
XPD devices connected to Argonne’s Cooley cluster via an Infiniband network. The initial design was to organize the file into 
contiguous segments on the remote memory then write those segments directly to the parallel file system. However, we soon 
discovered that data on the remote memory could not be written directly to the file system. Data would first need to be pulled 
back to a compute node before it could be sent to the file system. This led to the design of the three-phase collective I/O 
operation. In the first phase of this design, noncontiguous data from each rank is organized into contiguous segments on the 
remote memory. In the second phase, the contiguous segments are read back from the remote memory to a subset of selected 
ranks called aggregators. Last, the aggregators write the contiguous segments to the file system. 

II.  Synchronous Three-Phase Implementation 

 At this point in the research, the focus was on creating a proof of concept. There would clearly be an increase in 
overhead associated with adding an additional phase, but optimization was not the goal at this point. The emphasis was on 

Fig. 1: Two-phase collective I/O 
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simplicity so the initial implementation was designed to perform all phases 
synchronously with no overlap between the phases. Fig. 2 shows experimental data 
collected from the synchronous implementation of the three-phase collective write 
operation. In each experiment, the collective write is executed on three nodes with 
12 processes per node. 512 MB is being transferred per rank (18 GB total) with a 4-
to-1 aggregator ratio.  

 This figure demonstrates how performance decreases as the size of the 
contiguous segments on each rank decreases. This decline in performance is to be 
expected since a decrease in segment size translates into higher write frequency to 
organize the rank’s data onto remote memory. Fig. 2 also shows that the 
preponderance of total transfer time is being spent synchronizing the ranks between 
rounds. With a working implementation now completed, the focus was shifted 
toward performance optimization. The traditional two-phase collective I/O 
algorithm was designed for a traditional computer architecture. The next step in the 
research was to design a new algorithm which could take advantage of the capabilities and 
strengths of a disaggregated architecture. Particular consideration was given to minimizing the 
synchronization cost among the ranks between rounds. 
 
III. Algorithm for Disaggregated Architecture 

 Expanding the conventional memory hierarchy by 
adding a remote layer provides compute nodes with a 
seemingly infinite memory space. This algorithm was 
designed to take full advantage of this capacity. The 
algorithm begins by having each rank dump its local data 
to remote memory. Unlike the traditional two-phase 
algorithm, the data is not organized into contiguous 
segments at this first phase. Each rank merely copies its 
data to remote memory. In the second phase, aggregators 
are selected and tasked with reading the data back from 
remote memory. Here is where the contiguous segments 
are organized. Each aggregator knows what data it needs 
for any given round and where to find each chunk of data 
within the remote memory. Once an aggregator has 
collected all the chunks of a contiguous segment from 
remote memory, that segment is written to the file system 
which is the third phase.  

 Note that the key advantage to this algorithm is 
that synchronization cost is all but eliminated. The ranks 
must coordinate with each other once to signal that all local 
data has been transferred to remote memory. However after 
this one and only synchronization barrier, each aggregator is free to collect its needed chunks of data without regard to the other 
aggregators. This means ranks no longer need to be on the same round for the operation to execute properly and thus there is no 
need to synchronize between rounds. Moreover, the algorithm calls for all I/O operations to be executed asynchronously. This 
means the phases will now overlap providing even better performance. 

PERFORMANCE EVALUATION 

I. Performance evaluation using RAN benchmark 

 The above algorithm was implemented and tested. Fig. 4 shows experimental data collected from the asynchronous 
implementation of the three-phase collective write operation. The figure demonstrates the effect on performance when the number 
of ranks is varied while being executed on three nodes. Each rank is transferring 512 MB with a 4-to-1 aggregator ratio. Fig. 4 
shows that performance diminishes significantly once we pass the threshold of four processes per node. We found this to be true 
regardless of the number of nodes used. While the six and twelve rank experiments fall within the expected performance range, 
we observe a drastic spike in transfer time once twelve ranks is surpassed. While more ranks would inevitably translate into more 
network contention, this alone does not explain the performance we are observing. For if the network were truly saturated, we 
would expect to see proportionate increases in transfer time at every six rank interval. Not only is this not the case, we can 
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observe that the transfer time is relatively constant between the 24 and 30 rank experiments. Output from all experiments was also 
validated and proved to be valid. So we know the transfer process is still executing correctly. At this point, we can offer no 
explanation as to why this drastic increase is occurring. 

 To better understand the expected performance as the application scales, we designed and developed a RAN benchmark. 
Fig. 5 shows experimental data collected from the RAN benchmark while being executed on three nodes. Each rank is simply 
writing 512 MB to remote memory then reading that same data back. Phase 3 is not represented in this figure since the benchmark 
is only testing transfer times to and from remote memory. Fig. 5 shows a near perfect linear increase as the number of ranks 
increase. For the six and twelve rank experiments, we can observe similar transfer times between the benchmark and 
asynchronous implementation. However, the benchmark does not demonstrate the same drastic spike to transfer time once we 
pass twelve ranks. 

CONCLUSION 

 While this research area still requires further exploration, this project has provided a solid foundation for optimizing 
collective I/O operations using a RAM area network. As disaggregated architectures become more prevalent, the need for such 
optimized operations will continue to grow. This research has shown it is possible to perform collective I/O operations with 
minimal coordination among the ranks. This is particularly notable because synchronization costs typically represents a 
significant portion of the total transfer time in traditional architectures. 
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