
Process Placement in Multicore Clusters:
Algorithmic Issues and Practical Techniques

Emmanuel Jeannot, Guillaume Mercier, and François Tessier

Abstract—Current generations of NUMA node clusters feature multicore or manycore processors. Programming such architectures

efficiently is a challenge because numerous hardware characteristics have to be taken into account, especially the memory hierarchy.

One appealing idea to improve the performance of parallel applications is to decrease their communication costs by matching the

communication pattern to the underlying hardware architecture. In this paper, we detail the algorithm and techniques proposed to

achieve such a result: first, we gather both the communication pattern information and the hardware details. Then we compute a

relevant reordering of the various process ranks of the application. Finally, those new ranks are used to reduce the communication

costs of the application.

Index Terms—Parallel programming, high performance computing, multicore processing

Ç

1 INTRODUCTION

IN the fields of science and engineering, it is necessary to
solve complex problems that require a tremendous amount

of computational power (e.g., molecular dynamics, climate
simulation, plane wing design, etc.). Nowadays, for such
applications, parallel computers are used in order to solve
larger problems at longer and finer time-scales. However,
with the expected increase of application concurrency and
input data size, one of the most important challenges to be
addressed in the forthcoming years is that of locality, i.e., how
to improve data access and transfer within the application [1].

Among the different aspects of locality, one issue arises
from the memory and the network: the transfer time of data
exchanges between processes of an application depends on
both the affinity of the processes and their location. A thor-
ough analysis of the way an application behaves and of the
platform on which it is executed, as well as clever algo-
rithms and strategies have the potential to dramatically
improve the application communication time. Indeed, the
performance of many existing applications could benefit
from improved locality [2]. In this paper, we therefore tackle
this locality problem by optimizing data transfers between
processes of an application. The proposed solution relies
on models of the processes’ affinity and on models of
the topology of the underlying architecture. We use an
algorithm called TREEMATCH to perform an optimized pro-
cess placement that tells where to map these processes
on the computing units of a distributed memory multicore
parallel machine.

This paper exposes the model, TREEMATCH and some opti-
mizations as well as the techniques we developed to com-
pute and enforce a placement policy. Moreover, for

validation purposes, this work has been instantiated using
the message passing interface (MPI) [3]. Experiments show
that our algorithm, thanks to its adaptive strategies, is able to
execute faster than other usual techniques, such as graph-
embedding or graph partitioning. On synthetic kernels and
on a real-world computational fluid dynamics (CFD) appli-
cation, we show that, by placing the processes so that the
communication pattern matches the underlying hardware
architecture, substantial performance gains can be achieved
compared to standard MPI placement policies and other sol-
utions from the literature. Moreover, this placement can be
enforced automatically and transparently thanks to the vir-
tual topology mechanisms available in the MPI standard [4].

The work exposed in this paper expands and
enhances two prior works. Compared to the first version
of TREEMATCH published in [5], the new enhanced version
features a complexity reduced from exponential to polyno-
mial. Also, the study is carried out in the context of distrib-
uted memory systems with comparisons to state-of-the art
solutions: MPIPP and (new in this paper) Chaco, Metis,
Scotch. The integration of TREEMATCH in MPI implementa-
tions, as described in [6], is centralized and therefore
lacks scalability. The new version, partially distributed,
addresses such scalability issue. Last, all of the experimen-
tal results shown in Section 5 are unpublished ones.

This paper is organized as follows: Section 2 exposes the
problem and the method used for this work. Section 3
describes previous and related works dealing with process
placement, while the core of our work, TREEMATCH, is
described and discussed in Section 4. Experiments that vali-
date our approach are analyzed in Section 5, and Section 6
concludes this paper.

2 PROBLEM STATEMENT AND METHOD

DESCRIPTION

This work targets process placement to tackle the locality
problem that stems from the way data are exchanged
between processes of a parallel application either
through the network or through the memory. De facto,

� The authors are with the INRIA Bordeaux Sud-Ouest, 200 Avenue de la
Vieille Tour Talence 33405.
E-mail: {emmanuel.jeannot, francois.tessier}@inria.fr, mercier@labri.fr.

Manuscript received 6 Aug. 2012; revised 25 Jan. 2013; accepted 25 Mar.
2013; date of publication 7 Apr. 2013; date of current version 21 Feb. 2014.
Recommended for acceptance by M.E. Acacio.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.104

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014 993

1045-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the main standard for programming with parallel pro-
cesses is MPI. Therefore, in the remainder of this paper,
the problem is tackled through the prism of MPI. Never-
theless, most of this work it is not strictly bound to this
standard. It can be applied to any other parallel process-
based programming model. For instance, it can be
applied to Charm++ [7] and to a lesser extent to parti-
tioned global address space (PGAS) languages.

Moreover, we would like to emphasize the fact that the
method and algorithm presented in this paper make no
assumptions about the MPI processes themselves. Our
work is thus applicable even in the case of multithreaded
MPI processes: this only requires that the cores executing
the threads of a given process be considered as a single
processing element. To account for this abstraction, we will
refer to computing units in order to encompass both notions
of cores and processors.

An MPI application distributes its work among enti-
ties called MPI processes that run in parallel on the vari-
ous physical computing units of the machine (processors
or cores). The programming model of MPI is flat: each
process can communicate directly with other application
processes. All processes send and receive messages con-
taining data during the application execution. The
exchanges can be irregular, which means that a given
MPI process will not necessarily communicate with all
the other MPI processes and that the amount of data
exchanged between consecutive messages may vary.
This communication pattern can be viewed as a character-
istic of the application [8]. Several examples of such pat-
terns can be found in Appendix A, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.104.

On the other hand, MPI applications can run on a wide
range of hardware architectures. In the case of clusters of
NUMA nodes, both the network and the nodes’ internal
memory hierarchy induce communication speed varia-
tions. For instance, two processes sharing the same L3
cache will communicate faster than two processes located
on different nodes. As a consequence, the physical loca-
tion of the MPI processes influences application commu-
nication costs. That is, communication performance is
heterogeneous within a single machine. An intuitive idea
is therefore to match an application communication pat-
tern to the target hardware by mapping the application
processes onto dedicated computing units.

Process placement is of interest for classes of parallel
applications for which performance is limited by the com-
munication efficiency (a.k.a communication-bound applica-
tions). The current trend in parallel architectures is to
increase the number of computing units as much as possi-
ble. However, what is possible with processors and cores is
not with the memory resources. Hence, the amount of avail-
able memory per computing unit is likely to decrease drasti-
cally in the forthcoming years. As a consequence, the
process placement issue is relevant even for compute-
bound applications as in the near future the memory, and
later the network, might become the bottleneck of some of
them. Hence, decreasing communication costs is important
to improve scalability, regardless of the class of parallel
applications considered.

To compute such a mapping, we propose the following
three-steps method:

1. Gather the communication pattern of the target
application.

2. Model the target underlying architecture.
3. Compute a matching between the MPI process ranks

and the computing unit numbers. This matching
defines a placement policy that is enforced when the
application is launched.

2.1 First Step: Gathering an Application
Communication Pattern

The first piece of information needed is the target appli-
cation communication pattern. Currently, our method
relies on the instrumentation of the application code fol-
lowed by a preliminary run of this modified code. To
that end, we introduced a limited number of profiling
elements1 within existing MPI implementations (both
MPICH2 and Open MPI). By modifying the low-level
communication layers in the MPICH2 (e.g., the Nemesis
channel [9]) and Open MPI stacks, we are able to trace
data exchanges exhaustively in cases of both point-to-
point and collective communications, which is not the
case with regular profiling libraries. Indeed, thanks to
this low-level monitoring, we can see the control mes-
sages as well as the implementation-specific messages
forwarded during a collective operation (e.g., during a
gather or a scatter). Since this monitoring is very light, it
does not disturb the application execution.

The main drawback of this approach is the following:
this preliminary run of the application is mandatory and
a change in the execution (e.g., the number of processors,
the input data, etc.) often leads to a rerun of the profil-
ing. However, this step is necessary for legacy MPI
applications for which the pattern is not already avail-
able. Indeed, newly developed MPI applications could
provide the communication pattern directly to the rele-
vant MPI routine (see Step 3 in Section 2.3). In such a
case, this first step is not required anymore. We believe
that this monitoring approach is relevant in many cases.
Indeed, there are classes of scientific applications that
possess a static communication pattern. For instance,
CFD applications feature a regular pattern that is
repeated at each step of the algorithm.

For now, we consider only a spatial pattern, that is, we do
not take into consideration the changes (if any) in the appli-
cation behavior during its execution. Indeed, we consider
that the pattern is static and we aim to optimize the place-
ment based on the behavior of the whole execution of the
application. Also, we consider static applications, where the
number of MPI processes is constant during their execution.
We derive several metrics from the generated trace:

msg is the number of messages exchanged between pairs
of MPI processes. Such a view is important when we
have a lot of small messages and communications are
latency-bound.

1. These monitoring elements account for about a hundred lines of
code in the MPICH2 or Open MPI software stacks for instance.

994 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

size is the amount of data exchanged between pairs of MPI
processes. Such a view is important for bandwidth-
bound communications in the application.

avg is the average size of the messages exchanged between
pairs of MPI processes.

2.2 Next Step: Modeling the Hardware Architecture

The second step to determine a relevant process place-
ment is to retrieve information about the underlying
hardware (e.g., memory hierarchy, cores numbers, etc.).
To achieve this in a portable way is not straightforward.
Actually, until recently, no tool was able to easily provide
information about the various cache levels (such as their
sizes and which cores access them) on a wide range of
systems. To this end, we participated in the development
of a software to fulfill this goal: Hardware Locality or
HWLOC [10].

Indeed, thanks to HWLOC the hardware architecture can
be modeled by a tree, the depth of which corresponds to the
depth of the hardware component in the hierarchy (e.g., net-
work switches, cabinet, nodes, processors, caches, cores)
and where the leaves are the computing units of the archi-
tecture. HWLOC allows us to model the architecture in a por-
table fashion (i.e., across operating systems). It is also
flexible: this modeling can be performed dynamically
because HWLOC is implemented as a library that is callable
by another software, such as an MPI implementation.

However, the use of HWLOC in our work is not manda-
tory. Actually, one of our previous work [11] relied on a
topology matrix2 to model the architecture. Because such
a representation induces a flattening of the view of the
hardware structure, valuable information that could be
exploited by the matching algorithm is lost. Moreover,
since a NUMA node is most of the time hierarchically
structured, a tree provides a more reliable representation
than a topology matrix.

2.3 Last Step: Computing and Enforcing the
Process Placement

In this section, we describe how to enforce the placement
policy determined by the matching algorithm after both
previous pieces of information have been gathered. Our
algorithm is exposed in Section 4 (and further detailed in
Appendix D.1, available in the online supplemental mate-
rial). Enforcing the placement policy means that each MPI
process has to be executed on its own dedicated computing
unit. This task is out of the scope of the MPI standard and
falls on the MPI implementation process manager or run-
time system.

There are two methods to enforce the process placement
policy. The first one is the resource binding technique [11],
[13]. Generally speaking, binding the processes of a parallel
application to computing units leads to a decrease of the
system noise and improves performance (see Appendix B,
available in the online supplemental material). In this case,
the matching algorithm computes on which physical com-
puting unit an MPI process should be located. Therefore, a
unique MPI process rank of the application corresponds to

a single computing unit number.3 The MPI implementation
process manager then binds the application processes
accordingly. Legacy MPI applications do not need to be
modified to take advantage of this approach. Its drawbacks
are its lack of transparency because the user has to rely on
MPI implementation-specific options and its lack of flexibil-
ity since changing the binding during an application execu-
tion is difficult.

The second method is called rank reordering. In this case,
the MPI processes are first bound to computing units when
the application is launched, but without following a specific
or optimized binding policy. Then, the MPI application cre-
ates a new communicator with application-specific infor-
mation attached to it. The ranks of the MPI processes
belonging to this communicator can be reordered, that is,
changed to fit some application constraints. In particular,
these rank numbers can be modified to create a match
between the application communication pattern and the
underlying physical architecture. In this case, the matching
algorithm computes a new MPI rank number for each pro-
cess rather than a resource number. This reordering of rank
numbers should be performed before any application data
are loaded into the MPI processes in order to avoid data
movements afterwards.

Legacy MPI applications need to be modified to issue a
call to a rank-reordering MPI function and then use the
new communicator. Fortunately, the extent of these modi-
fications is quite limited (a few dozen code lines, see
Appendix C, available in the online supplemental mate-
rial, for examples). MPI_Dist_graph_create (part of
the standard since MPI 2.2 [4]) is one such MPI function
with rank reordering capabilities. It takes as arguments a
set of pointers (sources, destinations, degrees and
weights) that define a graph. These pointers can convey
random application communication patterns to the MPI
implementation. As the current implementation of this
function in Open MPI and MPICH2 software stacks does
not perform any rank reordering, we improved both ver-
sions by integrating HWLOC and our TREEMATCH matching
algorithm. Mercier and Jeannot [6] describes a centralized
version of this work in which a single MPI process gathers
all the hardware information with HWLOC, then calls TREE-

MATCH to compute the reordering and finally broadcasts
the new ranks to all the other MPI processes of the applica-
tion. To circumvent the lack of scalability of this approach,
we implemented, for this paper, a partially distributed ver-
sion in which each node reorders only its (local) MPI pro-
cesses. In this case, scalability is improved but the initial
dispatch of MPI processes has influence on the final result.
Indeed, the processes running TREEMATCH possess local
information only and therefore cannot reduce the amount
of internode communication in the application. Relying on
a standard MPI call ensures portability, transparency and
dynamicity as it can be issued multiple times during an
application execution. These aspects aside, the rank reor-
dering technique yields the same performance improve-
ments as the resource binding technique.

2. The same approach as in [12].
3. We make the hypothesis that there is no oversubscribing of the

computing units.

JEANNOT ET AL.: PROCESS PLACEMENT IN MULTICORE CLUSTERS: ALGORITHMIC ISSUES AND PRACTICAL TECHNIQUES 995

3 STATE OF THE ART

The issue of process placement on processors in order to
match a communication pattern to the underlying hardware
architecture has been studied previously. This mapping
problem is usually modeled as a graph embedding problem.
More precisely, the problem is introduced in [14] and an
algorithm based on the Kernighan-Lin heuristic [15] is
described as well as results for several benchmarks. How-
ever, this work is tailored for a specific vendor hardware
and is thus not suitable for generic architectures. Also, the
author optimizes some of the routines that create Cartesian
topologies but leaves unaddressed the generic graph topology
case. The experiments show dramatic improvements but
are restricted to benchmarks that only perform communica-
tions and no computation.

Some other works address generic virtual topologies
(used to express the communication pattern) but consider
only the network physical topology for the hardware
aspects. The Blue Gene class of machines has been espe-
cially targeted [16], [17], or [18]. InfiniBand fabric is also a
subject of studies: [19] and [20] empirically assess the per-
formance of the interconnection network to provide a
usable model of the underlying architecture. Subramoni
et al. [21] use the Neighbor Joining Method to detect the
physical topology of the underlying InfiniBand network.
LibTopoMap [22] also considers generic network topologies
and relies on ParMETIS [23] to solve the resulting graph
problem. Such approaches are definitively complementary
to our work as they do not take into account the internal
structure of multicore nodes.

MPI topology mechanism implementation issues are dis-
cussed in [24]. Both Cartesian and graph topologies are
addressed by this work, and the algorithm proposed is also
based on the Kernighan-Lin heuristic. The optimization cri-
terion considered is either the total communication cost or
the optimal load balance. Again, this work is designed for a
specific vendor hardware (NEC SX series). The proposed
approach is thus less generic than ours and, more impor-
tantly, does not apply to clusters of multicore nodes, which
are our target architectures.

MPIPP [12] is a set of tools aimed at optimizing an MPI
application execution on the underlying hardware. MPIPP
relies on an external tool to gather the hardware informa-
tion statically, while we manage to perform this task
dynamically at runtime (see Section 2.2). Also, MPIPP
allows only the dispatching of MPI processes on nodes
(machines) and does not address the mapping of processes
on specific computing units within a node. Multicore
machines are thus not fully exploited, as the memory hier-
archy cannot be taken into account. The same drawback
applies to [25], which manages to effectively reduce the
amount of internode communication of an MPI application
by performing a so-called reordering operation. However,
the meaning of reordering in [25] is different from our work.
Indeed, [25] only reorganizes the file containing the node
names (a.k.a the hosts file), thus changing the way pro-
cesses are dispatched on the nodes. That is, the MPI pro-
cesses are not bound to dedicated computing units and the
application does not actually call any real MPI reordering
routine. Hence, our partially distributed implementation of

MPI_Dist_graph_create could be an ideal complement
to this work.

Some recent works bind MPI processes to dedicated
computing units in order to improve communications per-
formance. This resource binding technique is studied in [13]
and [11]. Both were published around the same time and
share a very similar design. As a consequence, they suffer
from the same limitations: they do not make use of standard
MPI calls to reorder the process ranks, they both rely on the
SCOTCH [26] partitioner and they are unable to gather the
hardware information dynamically at runtime. Also, [13]
uses a purely quantitative approach, while ours is qualita-
tive since we manage to use the structure of the memory
hierarchy of a node. It is worth noting that major free MPI
implementations such as MPICH2 [27] and Open MPI [28]
provide options to perform this binding of processes at
launch time thanks to their process managers, Hydra and
ORTE, respectively. The user can choose from some more or
less sophisticated predefined placement policies (e.g., [29]).
However, such policies are generic and fail to consider the
application’s communication patterns specificities. There
are other runtime systems that make use of the resource
binding technique, such as the ones provided by MPI ven-
dors’ implementations from Cray [30], [31], HP [32] and
IBM (according to [33]).

Collective communications are an important feature of
the MPI interface and several works aim at to improve their
performance by taking into account the underlying physical
architecture. For instance, [34] uses a hierarchical two-level
scheme to make better use of multicore nodes. Zhang et al.
[35] and Ma et al. [36] introduce process placement strate-
gies in collectives to find the most suitable algorithm for the
considered collective operation. Our work considers all
communication in the application and is not restricted to
collective operations.

Besides the aforementioned Kernighan-Lin heuristic,
there are algorithms that are able to solve a Graph Embedding
Problem. Chaco [37] and Metis [23] (or ParMetis for its paral-
lel version) are examples of such graph-partitioning soft-
ware. SCOTCH [26] is a graph-partitioning framework that is
able to deal with tree-structured input data (called tleaf) to
perform the mapping. An important difference between
graph partitioning/embedding techniques and our work is
that we only need the structure and the topology of the tar-
get hardware while the other works require quantitative
information about the hardware in order to make a precise
evaluation of the communication time, which is, most of the
time, impossible to collect on current hardware due to
NUMA effects.

Programming models other than MPI can be used to
address the problem of process placement. For instance, in
CHARM++ [7], it is possible to perform dynamic load bal-
ancing of internal objects (chares) using information about
the affinity and the topology. PGAS languages (e.g., UPC
[38]) expose a simple two-level scheme (local and remote)
for memory affinity that can be used for mapping processes.

4 THE TREEMATCH ALGORITHM

In this section, we present our matching algorithm, called
TREEMATCH. This algorithm, depicted in Algorithm 1, is able

996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

to compute a matching for the resource binding technique
(i.e., computing units numbers) or for the rank reordering
technique (i.e., new MPI ranks). A first version of TREE-

MATCH was published in [5]. More details about TREEMATCH

are given in Appendix D.1, available in the online supple-
mental material.

TREEMATCH uses a tree for modeling the hardware, while
other solutions (e.g., MPIPP, ParMetis, etc.) need a topology
matrix describing the communication cost between each
pair of processes. Having a tree eases significantly the algo-
rithmic process by ignoring the quantitative aspect of the
communication: the speed and latency of the cache hierar-
chy. Indeed, gathering such information is not always easy
and communication speeds between computing units are
very hard to model accurately as they depend on many fac-
tors (message size, cache size, contention, latency, band-
width, etc.). Therefore, using only structural and qualitative
information avoids such inaccuracy and enables more por-
table solutions based only on the target hardware structure
(see Appendix E, available in the online supplemental mate-
rial, for more details).

In the case where the nodes allocated to the applications
are scattered all over the parallel machine, TREEMATCH is
still able to provide a solution. If the network topology of
the machine is a tree, it must abstract the allocated portion
using a balanced tree covering it (perhaps at the cost of
flattening the structure). If the topology is an arbitrary
graph, the network needs to be abstracted by a single node
in the topology. In Appendix G.1, available in the online
supplemental material, we provide an experiment that
shows that in some cases, flattening the network does not
significantly hinder the performance. Moreover, as
explained in the state-of-the-art Section, complex network
topologies are addressed by other works in a complemen-
tary fashion.

In TREEMATCH, the topology tree is processed upward
and processes are recursively grouped according to the
arity of the next considered level. The main cost of
the algorithm is in the function GroupProcesses (see
Appendix D.1, available in the online supplemental mate-
rial). If k is the arity of the next level and p is the order of
the current communication matrix, the complexity of this
part is proportional to the number of k-sized groups
among a set of p elements, and this number is p

k

� �
. How-

ever, p
k

� �
¼ OðpkÞ. Hence, the standard version has an

exponential complexity.

To avoid combinatorial explosion of the algorithm
running time we provide, in this paper, two new mecha-
nisms. First, we artificially decompose a level of the tree
into several levels. Second, we simplify the search and
building of groups when the number of such groups is
large. Both optimizations are detailed and discussed in
the following subsection.

4.1 Running Time Optimization of TREEMATCH

4.1.1 Arity Division of the Tree

In order to reduce the number of possible groups in the
function GroupProcesses, we decompose a level of the
tree of high arity into one or several levels of smaller arity.
The only constraint is that the product of the arities of these
new levels has to be equal to the arity of the original level.

For instance, if a tree has a level with an arity of 4, we
decompose this level into two levels of arity 2. This increases
the number of times the function GroupProcesses is
called. But, as 2� ðp2Þ is smaller than ðp4Þ for p > 8, this is ben-
eficial as long as we have to map eight processes or more
(i.e., we are dealing with lower levels of the tree).

More generally, we can decompose k into prime factors
and compute a decomposition of a node of arity k into dif-
ferent levels with an arity corresponding to each factor. As
in modern computers the number of computing units in a
node is generally a multiple of 2 or 3, such techniques help
to reduce k to reasonable values for the lower levels of the
tree (when p is high).

Let fk;dðpÞ ¼
ðp
k
Þ

dð p
k=d
Þ, the function that models the gain when

we divide a node of arity k into d nodes of arity k=d for p
processes (k < p and d divides k). Let us study when we
have a gain (i.e., when fk;dðpÞ > 1).

By definition of ðpkÞ, we have:4

fk;dðpÞ ¼
k
d

� �
! p� k

d

� �
!

k! p� kð Þ!d :

The first order derivative is:

f 0k;dðpÞ ¼ �
C p� kþ 1ð Þ �C pd�kþd

d

� �� �
pd�k
d

� �
! k
d

� �
!

k! p� kð Þ!d ;

where C is the Digamma function that increases in �0;þ1½. As
p� kþ 1 < pd�kþd

d ; f 0k;dðpÞ is positive for 0 < k < p. Hence,
fk;dðpÞ is increasing with p. Moreover,

lim
p!1

fk;dðpÞ ¼
k
d

� �
!

k!d
lim
p!1

p� k
d

� �
!

p� kð Þ! ¼ þ1;

because k < p and d > 1. Therefore, there exists a number p�,
such that 8p > p�; fk;dðpÞ > 1 and hence ðpkÞ > dð p

k=d
Þ. This

means that for any given node of arity k, there is a number of
processes above which it is always better to decompose this
node in d nodes of arity k=d (where d divides k).

Based on this consideration, we now ask this question:
given a node of arity k, what is the value of p� and what is
the optimal value (d�) of d? In order to answer this question,
we have computed all the possibilities for k � 128 and

4. Most of these computations can be checked using Matlab.

JEANNOT ET AL.: PROCESS PLACEMENT IN MULTICORE CLUSTERS: ALGORITHMIC ISSUES AND PRACTICAL TECHNIQUES 997

p � 500;000. The best value of d is the one that minimizes
dð p
k=d
Þ. Interestingly enough, it appears that for all tested val-

ues of k and p this optimal value d� does not depend on p
and is always the greatest non trivial divisor of d (i.e., the
greatest divisor not equal to d). This means that for any
value of k there is only one value of p� and one value of d�

such that 8p � p�; ðpkÞ > d�ð p
k=d�Þ and 8p � p�; d � d�;

dð p
k=d
Þ > d�ð p

k=d�Þ. For all k � 128 and not prime, we display

the values of p� and d� in Table 2 found in Appendix D.2,
available in the online supplemental material.

Given a tree, it is now easy to optimally decompose it
into a tree for which nodes of high arity are decomposed
into nodes of smaller arity. We first recall that in this work
we assume that the arity of all the nodes of a given level of a
tree is the same. Then, at level n given a node of arity kn, in
order to decide if we decompose it or not we need to com-
pute p, the number of processes (or group of processes) that
will be considered by the TREEMATCH algorithm. We have
p ¼

Qn
i¼0 ki: the number of nodes of the considered trees of

a given level is the product of the arities of the above levels.
Then, if in the table at row k, p is greater than p�, we divide
all the nodes of the level into d� nodes of arity k=d�. To deal
with large arities, we traverse the tree several times (to
check if the new node of arity K=d� can also be decom-
posed) until there is no more possible node decomposition.

For example, consider a tree of depth 3 with arity from
root to leaves equal to 4, 4 and 1. Based on Table 2 of
Appendix D.2, available in the online supplemental mate-
rial, we see that it is optimal to only decompose the four
nodes of the second level because, for the first level, the
TREEMATCH algorithm will deal only with four groups of
processes. After optimization of the tree, we obtain four lev-
els with arities of 4, 2, 2 and 1.

4.1.2 Speeding up the Group Building

Reducing the arity of a node is very useful as ðpkÞ ¼ OðpkÞ.
Thanks to the above techniques, most of the current archi-
tectures can be decomposed in trees with arities 2 and/or 3,
reducing the complexity of each TREEMATCH step to squared
or cubic complexities. However, even in this case, the cost
of these steps can be very high if we want to use TREEMATCH

at runtime (e.g., in a load-balancer). Moreover, we cannot
take this actual state for granted, and it is possible that inter-
nal arities of nodes will be higher in the future. For instance,
it is already the case in some machines that the current arity
of network switches is neither a multiple of 2 nor 3.

In order to handle this case, we have introduced a
faster way of grouping processes or groups of processes.
This is described in the FastGroupProcesses function,
which is executed instead of the GroupProcesses one
when ðpkÞ � Th, where Th is a user-given threshold (30;000
by default).

It works as follows: first, elements of the matrix are
sorted according to their orders of magnitude into b buckets
(there are eight buckets by default). The largest elements of
the matrix are put in the first bucket, smaller elements in
the last bucket. To construct these buckets, we randomly
extract a sample of 2b elements of the matrix. Then, we sort
this sample. To perform the partial sorting we extract b� 1
pivots from this sample. The first pivot is the largest ele-
ment of the sample and the ith pivot pi is the 2i�1 largest ele-
ment of the sample. Then, we set p0 ¼ þ1 and pb ¼ 0. Then,
each element of the matrix of value v is put in the bucket j
such that pj�1 < v � pj.

Once all the matrix elements are put in the list of buckets,
we consider these elements bucket by bucket, starting with
the bucket of largest elements. We sort the current bucket
and we group the largest elements of the current bucket
together while there are not enough groups. This is done
greedily with the only constraint being that an element of
the matrix cannot be in two different groups. If a bucket is
exhausted, we take the next one.

5 EXPERIMENTAL VALIDATION

In this section, we detail both the hardware and software
elements used in our experiments and we analyze the
results achieved.

5.1 Experimental Environment

All experiments have been carried out on a cluster called
PlaFRIM. This cluster is composed of 64 nodes linked
with an InfiniBand interconnect (HCA: Mellanox Technol-
ogies, MT26428 ConnectX IB QDR). Each node features
two Quad-core- INTEL XEON NEHALEM X5550 (2.66 GHz)
processors. Eight Mbytes of L3 cache are shared between
the four cores of a CPU. There are also 24 GB of 1.33
GHz DDR3 RAM on each node. The operating system is
a SUSE Linux (2.6.27 kernel). We reserved two InfiniBand
QDR switches and 16 nodes on each to perform the
experiments. As for the software, by default we used
Open MPI ver. 1.5.4 (MVAPICH2 ver 1.8 for one experi-
ment) and HWLOC ver. 1.4.1.

First, we ran experiments with the NAS Parallel Bench-
marks [39]. We focused on three particular kernels:

� the conjugate gradient (CG) kernel because of its
irregular memory accesses and communications

� the fourier transform (FT) kernel for its all-to-all
communication pattern

� the Lower-Upper Gauss-Seidel kernel (LU), which
features a solver with irregular memory accesses

For these three kernels we used two classes (C and D)
to represent average or large problem sizes. We also
chose to test process placement on a real-world applica-
tion: ZEUS-MP/2 [40]. ZEUS-MP/2 is a CFD application
that includes gas hydrodynamics, ideal magnetohydro-
dynamics, flux-limited radiation diffusion, self gravity,
and multispecies advection.

We compared TREEMATCH with Scotch, ParMETIS, Chaco
and MPIPP. As MPIPP is a randomized strategy we have
two versions: MPIPP1 and MPIPP5. MPIPP5 consists of
applying MPIPP1 five times. We also tested two greedy pro-
cess placement policies. The first one, called Round Robin

998 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

(RR), corresponds to the physical identity (process i is
mapped onto physical computing unit i).5 The second one,
called Packed, corresponds to the logical identity (process i is
mapped onto logical computing unit i). Logical numbering
is usually different from the physical one: in logical num-
bering, units are numbered consecutively using a breadth-
first search traversal of the tree.6 Some partitioners are
natively able to find a solution to the process mapping prob-
lem as defined here (e.g., Scotch with the tleaf input data,
MPIPP). For ParMETIS and Chaco, we implemented a
graph-embedding algorithm to solve the mapping problem
by leveraging their k-way partitioning capabilities. It is
worth noting that because of a coarsening algorithm, Scotch
and ParMETIS sometimes need a normalized matrix.

Another important issue encountered with Scotch is the
following: it takes as input a tleaf file to represent the archi-
tecture with an edge-weighted tree. These weights are used
to compute the process placement and the resulting map-
ping depends on these values. In our results, we used two
versions of Scotch: the first one, called Scotch, uses very
small values (between 1 and 4) for the weights while the
second one, called Scotch_w, uses larger values (between
10 and 500). See Appendix F, available in the online supple-
mental material, for a detailed discussion.

We used the three metrics described in Section 2.1: the
number of messages exchanged (msg), the amount of data
exchanged (size) and a value corresponding to the average
size of one message (avg). As for the processes count, we
ran every test case with 64, 128 and 256 process configura-
tion (and the same number of computing units).

5.2 Results

5.2.1 Mapping Computation Time

In this section, we measured the mapping computation time
of each graph partitioner and TREEMATCH. We mapped a
communication graph ranging from 64 to 16,384 vertices
(corresponding to the same number of processes) on a
topology tree modeling 128 switches of 16 nodes with two
quad-core sockets. These communication graphs are dense

graphs, modeling patterns where all processes communi-
cate at least once with every other one.

Results are depicted in Fig. 1. It shows the average run-
time of 10 executions versus the graph size. Only calculation
times are displayed. I/O timings (i.e., loading the graph and
writing the solution to disk) are excluded. Runs have been
made on a 2.66 GHz Intel Nehalem CPU.

We excluded the mapping time of MPIPP5. As we shall
see in the results, MPIPP1 is already the slowest placement
method (more than 3,550 s on a 256-vertices graph) and
MPIPP5 is on average five times slower than MPIPP1. We
do not plot the Chaco graph after a size of 512 because it
fails to handle larger graphs.

On this plot, we can see that for small cases, Scotch is the
fastest solution. For a 128-vertices graph, Scotch takes 10 ms
while TREEMATCH takes 957 ms. However, beyond this size,
TREEMATCH changes its mapping strategy (as explained
in Section 4.1.2) and the slope of its curve flattens. For
size 2,048 and more, TREEMATCH is the fastest strategy. For
size 16,384, TREEMATCH is seven times faster than Scotch
and 20 times faster than ParMETIS. This demonstrates that
TREEMATCH scales better than the other methods.

5.2.2 NAS Parallel Benchmarks Comparison

For our experiments, we did a Cartesian product of all vari-
able parameters (i.e., metrics, kernels, classes and process
counts) leading to 3� 3� 2� 4 ¼ 72 cases. Each case was
run ten times and we computed the average execution time.

Fig. 2 shows the projection for the various NAS kernels
(i.e., CG, FT and LU) and depicts the ratio to TREEMATCH

for each placement method using boxplots: the higher the
ratio, the better TREEMATCH is. Each boxplot graphically
presents five statistics:7 the median (bold line), the lower

Fig. 1. Average mapping computation time comparison for various
placement methods.

Fig. 2. Average execution time ratio between TREEMATCH and other
placement methods for the NAS benchmarks. Results projected by ker-
nels (LU, CG and FT). Metric Avg excluded.

5. This policy is typically enforced by batch schedulers when reserv-
ing nodes in a cluster for MPI applications.

6. In Appendix D.1, available in the online supplemental material,
Fig. 9 depicts the difference between RR and Packed policies. 7. See http://en.wikipedia.org/wiki/Box_plot for more details.

JEANNOT ET AL.: PROCESS PLACEMENT IN MULTICORE CLUSTERS: ALGORITHMIC ISSUES AND PRACTICAL TECHNIQUES 999

and upper quartile (colored box), lower (resp. upper)
whiskers represent the lowest (resp. largest) datum
within 1.5 times the interquartile range of the lower (resp.
upper) quartile, outliers are shown as dots.

In this experiment, as there is no difference between the
two versions of Scotch (small or large weights), we only
show the small weights version.

On average, we see that Packed and RR are outperformed
by TREEMATCH. This is due to the fact that RR and Packed are
efficient only for communication matrices that have large
elements near the diagonal.

TREEMATCH shows better performance than the other
methods. The best gain is achieved for the CG kernel.
This is explained by the fact that the communication
matrix is highly irregular and with large communication
outside of the diagonal. Therefore, the placement pro-
posed by TREEMATCH greatly reduces the costs associated
with these communications. For the FT kernel the gains
are small because the communication matrix is very
homogeneous (especially for the size metric). Hence, the
process placement has only a moderate influence on the
execution time. The LU kernel is between the CG and
the FT kernels in terms of regularity and diagonal domi-
nance and small gains are achievable with this kernel.
More results can be found in Appendix G.2, available in
the online supplemental material.

5.2.3 ZEUS-MP/2 Comparison

In this section we present experiments carried out on the Pla-
FRIM platform with the ZEUS-MP/2 CFD application. We

have chosen to show the msg metric as it leads to the lowest
execution time for any method and for up to 3000 iterations.

Figs. 3a, 3b, and 3c depict the results for different pro-
cess counts.

The ZEUS-MP/2 communication pattern is very irregu-
lar and process placement impacts the execution time. RR
and Packed also yield good results and rank third and fourth
in this experiment. Moreover, for 256 processes TREEMATCH

outperforms RR by more than 25 percent (285.62 s versus
388.61 s). Other methods lead to longer execution times,
especially graph partitioners such as Chaco or ParMETIS.

For these experiments, we see a difference whenever
Scotch uses small or large weights for describing the topol-
ogy. The performance of the large weight case is the worst.
For us, finding the best weights has not been possible with-
out testing the mapping produced by Scotch and the slight
difference between the two configurations leads to a very
large difference in terms of performance (timings are more
than doubled in Fig. 3c). TREEMATCH does not suffer from
this drawback as it relies only on structural properties of the
topology. Moreover, as shown in Fig. 11 of Appendix E,
available in the online supplemental material, the communi-
cation time between computing units is not a linear (not
even an affine) function of the message size. This explains
why the tleaf model used by Scotch is not able to capture
the time taken to send a message.

5.2.4 Centralized versus Distributed Mapping

Fig. 4 shows the performance improvements obtained for
ZEUS-MP/2 (mhd blast case, 64 processes) for various
placement policies. Our reference policy is RR. Besides
Packed, we tested TREEMATCH with size and msg metrics,
both in centralized and partially distributed ways (c.f. Sec-
tion 2.3). The results confirm that the best metric is msg
and show that centralized reordering performs better than
other policies. This is due to the fact that we manage to
reduce internode traffic and to improve intranode commu-
nication. For larger iteration counts, the gain is roughly
12 percent (67 s execution time for RR versus 59 s). As for
the partially distributed reordering, the initial dispatch of
processes was similar to that of RR. Hence, even if the per-
formance delivered is only on a par with Packed, we still

Fig. 3. Average execution time of ZEUS-MP/2 on several numbers of
processes (average of 10 runs, msg metric, 3,000 iterations).

Fig. 4. ZEUS-MP/2 (mhd blast case, 64 processes, MVAPICH2): influ-
ence of the placement policy on performance.

1000 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

manage to improve on RR. But as the machines feature
only eight cores, we cannot expect more improvements.
We would like to make tests on nodes featuring larger
numbers of cores in the future.

6 CONCLUSION AND FUTURE WORKS

The locality problem is becoming a major challenge for cur-
rent applications. Improving data access and communica-
tion is a key issue for obtaining the full performance of the
underlying hardware. However, not only does the commu-
nication speed between computing units depend on their
locations (due to cache size, memory hierarchy, latency and
network bandwidth, topology, etc.), but also the communi-
cation pattern between processes is not uniform (some pairs
of processes exchange far more data than others).

In this paper, we have presented a new algorithm called
TREEMATCH, which computes a process placement of the
application tailored for the target machine. It is based on
both the application communication pattern and the archi-
tecture of the machine. Unlike other approaches using
graph-partitioning techniques, TREEMATCH does not need
accurate and quantitative information about the various
communication speeds. Moreover, to speed up the algo-
rithm, we have proposed several optimizations: one is
based on tree decomposition while the other relies on a fast
group building.

To evaluate our solution, we have compared TREEMATCH

against state-of-the-art strategies. Two kinds of applications
have been tested: the NAS parallel benchmarks and a CFD
application (ZEUS-MP/2). Results show that TREEMATCH

consistently outperforms graph-partitioning based techni-
ques. Regarding the Packed and RR policies, the more irreg-
ular the communication pattern, the better the results.
Gains of up to 25 percent have been exhibited in some cases.

TREEMATCH is available in several implementations of
MPI (MPICH2 and Open MPI) as the MPI_Dist_graph_

create function enabling rank reordering. Moreover, a
partially distributed version for large NUMA nodes inter-
connected by a network is also provided.

Future works are directed towards a fully distributed
version of TREEMATCH for the use of large-scale machines.
Another study will focus on easing the gathering of the
communication pattern. Several ways are possible, from
static analysis of the code to simulation of the communica-
tions or user-given information based on the structure of
the data. Experiments on very large machines are also tar-
geted, especially ones with a large number of cores. This
might require even further optimization of TREEMATCH.

REFERENCES

[1] J. Dongarra and P. Beckman et al., “The International Exascale
Software Roadmap,” Int’l J. High Performance Computer Applica-
tions, vol. 25, no. 1, pp. 3-60, 2011.

[2] PRACE, “The Scientific Case for High Performance Computing in
Europe,” report, http://www.prace-ri.eu/IMG/pdf/prace_the_
scientific_case_executive_s.pdf, p. 147, 2012.

[3] MPI: A Message-Passing Interface Standard, Message Passing Inter-
face Forum, Mar. 1994.

[4] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B.R. de Supinski, R.
Thakur, and J.L. Tr€aff, “The Scalable Process Topology Inter-
face of MPI 2.2,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 4, pp. 293-310, 2011.

[5] E. Jeannot and G. Mercier, “Near-Optimal Placement of MPI Pro-
cesses on Hierarchical NUMA Architectures,” Proc. 16th Int’l
Euro-Par Conf. Parallel Processing (Euro-Par ’10), pp. 199-210, Sept.
2010.

[6] G. Mercier and E. Jeannot, “Improving MPI Applications Perfor-
mance on Multicore Clusters with Rank Reordering,” Proc. 18th
European MPI Users’ Group Conf. Recent Advances in the Message
Passing Interface (EuroMPI), pp. 39-49, Sept. 2011.

[7] L. Kale and S. Krishnan, “CHARM++: A Portable Concurrent
Object Oriented System Based on C++,” Proc. Eighth Ann. Conf.
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’ 93), pp. 91-108, Sept. 1993.

[8] C. Ma, Y.M. Teo, V. March, N. Xiong, I.R. Pop, Y.X. He, and S. See,
“An Approach for Matching Communication Patterns in Parallels
Applications,” Proc. 23rd IEEE Int’l Parallel and Distributed Process-
ing Symp. (IPDPS ’09), May 2009.

[9] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and
Evaluation of Shared-Memory Communication and Synchroniza-
tion Operations in MPICH2 Using the Nemesis Communication
Subsystem,” J. Parallel Computing, Selected Papers from EuroPVM/
MPI 2006, vol. 33, no. 9, pp. 634-644, Sept. 2007.

[10] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “Hwloc: A Generic Frame-
work for Managing Hardware Affinities in HPC Applications,”
Proc. 18th Euromicro Int’l Conf. Parallel, Distributed and Network-
Based Processing (PDP ’10), http://hal.inria.fr/inria-00429889, Feb.
2010.

[11] G. Mercier and J. Clet-Ortega, “Towards an Efficient Process
Placement Policy for MPI Applications in Multicore Environ-
ments,” Proc. 16th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing
Interface (EuroPVM/MPI), pp. 104-115, Sept. 2009.

[12] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: An
Automatic Profile-Guided Parallel Process Placement Toolset for
SMP Clusters and Multiclusters,” Proc. 20th Ann. Int’l Conf. Super-
computing (ICS), pp. 353-360, 2006.

[13] E. Rodrigues, F. Madruga, P. Navaux, and J. Panetta, “Multicore
Aware Process Mapping and Its Impact on Communication Over-
head of Parallel Applications,” Proc. IEEE Symp. Computers and
Comm., pp. 811-817, July 2009.

[14] T. Hatazaki, “Rank Reordering Strategy for MPI Topology Crea-
tion Functions,” Proc. Fifth European PVM/MPI Users’ Group Meet-
ing on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, vol. 1497, pp. 188-195, http://dx.doi.org/
10.1007/BFb0056575, 1998.

[15] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” Bell System Technical J., vol. 49, no. 2,
pp. 291-307, Feb. 1970.

[16] B.E. Smith and B. Bode, “Performance Effects of Node Mappings
on the IBM BlueGene/L Machine,” Proc. European Conf. Parallel
Processing (Euro-Par), pp. 1005-1013, 2005.

[17] H. Yu, I.-H. Chung, and J.E. Moreira, “Blue Gene System
Software-Topology Mapping for Blue Gene/L Supercomputer,”
Proc. Int’l Conf. Supercomputing (SC), p. 116, 2006.

[18] P. Balaji, R. Gupta, A. Vishnu, and P.H. Beckman, “Mapping
Communication Layouts to Network Hardware Characteristics
on Massive-Scale Blue Gene Systems,” Computer Science - R&D,
vol. 26, no. 3/4, pp. 247-256, 2011.

[19] M.J. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp, “Multi-
Core and Network Aware MPI Topology Functions,” Proc. 18th
European MPI Users’ Group Conf. Recent Advances in the Message
Passing Interface (EuroMPI), pp. 50-60, 2011.

[20] S. Ito, K. Goto, and K. Ono, “Automatically Optimized Core Map-
ping to Subdomains of Domain Decomposition Method on Multi-
core Parallel Environments,” Computer & Fluids, vol. 80, pp. 88-93,
Apr. 2012.

[21] H. Subramoni, S. Potluri, K. Kandalla, B. Barth, J. Vienne, J. Keas-
ler, K. Tomko, K. Schulz, A. Moody, and D. Panda, “Design of a
Scalable Infiniband Topology Service to Enable Network-Topol-
ogy-Aware Placement of Processes,” Proc. ACM/IEEE Conf. Super-
computing (CDROM), p. 12, 2012.

[22] T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for
Large-Scale Parallel Architectures,” Proc. Int’l Conf. Supercomput-
ing (ICS), pp. 75-84, 2011.

[23] G. Karypis and V. Kumar, “METIS - Unstructured Graph Parti-
tioning and Sparse Matrix Ordering System, Version 2.0,” techni-
cal report 1995.

JEANNOT ET AL.: PROCESS PLACEMENT IN MULTICORE CLUSTERS: ALGORITHMIC ISSUES AND PRACTICAL TECHNIQUES 1001

[24] J.L. Tr€aff, “Implementing the MPI Process Topology Mechanism,”
Proc. ACM/IEEE Conf. Supercomputing (Supercomputing ’02), pp. 1-
14, 2002.

[25] B. Brandfass, T. Alrutz, and T. Gerhold, “Rank Reordering for
MPI Communication Optimization,” Computer & Fluids, vol. 80,
pp. 372-380, Jan. 2012.

[26] F. Pellegrini, “Static Mapping by Dual Recursive Bipartitioning of
Process and Architecture Graphs,” Proc. Scalable High-Performance
Computing Conf. (SHPCC ’94), pp. 486-493, May 1994.

[27] Argonne National Laboratory, “MPICH2,” http://www.mcs.anl.
gov/mpi/2004, 2013.

[28] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J.M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R.H.
Castain, D.J. Daniel, R.L. Graham, and T.S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI
Implementation,” Proc. 11th European PVM/MPI Users’ Group
Meeting, pp. 97-104, Sept. 2004.

[29] J. Hursey, J.M. Squyres, and T. Dontje, “Locality-Aware Parallel
Process Mapping for Multi-Core HPC Systems,” Proc. IEEE Int’l
Conf. Cluster Computing (CLUSTER), pp. 527-531, 2011.

[30] Nat’l Inst. for Computational Sciences, “MPI Tips on Cray XT5,”
http://www.nics.tennessee.edu/user-support/mpi-tips-for-cray-
xt5, 2013.

[31] J.L. Whitt, G. Brook, and M. Fahey, “Cray MPT: MPI on the Cray
XT,” http://www.nccs.gov/wp-content/uploads/2011/03/
MPT-OLCF11.pdf, 2011.

[32] D. Solt, “A Profile Based Approach for Topology Aware MPI
Rank Placement,” http://www.tlc2.uh.edu/hpcc07/Schedule/
speakers/hpcc_hp-mpi_solt.ppt, 2007.

[33] E. Duesterwald, R.W. Wisniewski, P.F. Sweeney, G. Cascaval, and
S.E. Smith, “Method and System for Optimizing Communication
in MPI Programs for an Execution Environment,” http://
www.faqs.org/patents/app/20080288957, 2008.

[34] H. Zhu, D. Goodell, W. Gropp, and R. Thakur, “Hierarchical Col-
lectives in MPICH2,” Proc. 16th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pp. 325-326, 2009.

[35] J. Zhang, J. Zhai, W. Chen, and W. Zheng, “Process Mapping for
MPI Collective Communications,” Proc. 15th Int’l Euro-Par Conf.
Parallel Processing (Euro-Par), pp. 81-92, 2009.

[36] T. Ma, T. H�erault, G. Bosilca, and J. Dongarra, “Process Distance-
Aware Adaptive MPI Collective Communications,” Proc. IEEE
Int’l Conf. Cluster Computing (CLUSTER), pp. 196-204, 2011.

[37] B. Hendrickson and R. Leland, “The Chaco User’s Guide: Version
2.0,” Technical Report SAND94–2692, Sandia Nat’l Laboratory,
1994.

[38] UPC Consortium, “UPC Language Specifications, v1.2,” Technical
Report LBNL-59208, Lawrence Berkeley Nat’l Lab, 2005.

[39] D.H. Bailey, E. Barszcz, L. Dagum, and H. Simon, “NAS Parallel
Benchmark Results,” Technical Report 94-006, RNR, 1994.

[40] J.C. Hayes, M.L. Norman, R.A. Fiedler, J.O. Bordner, P.S. Li, S.E.
Clark, A. ud-Doula, and M.-M. McLow, “Simulating Radiating
and Magnetized Flows in Multiple Dimensions with ZEUS-MP,”
The Astrophysical J. Supplement, vol. 165, no. 1, pp. 188-228, 2006.

[41] M. Kneser, “Aufgabe 300,” Jahresber. Deutsch. Math. -Verein 58,
1955.

[42] A. Kako, T. Ono, T. Hirata, and M.M. Halldorsson,
“Approximation Algorithms for the Weighted Independent Set
Problem,” Proc. 31st Int’l Workshop Graph-Theoretic Concepts in
Computer Science (WG ’05), pp. 341-350, 2005.

Emmanuel Jeannot received the master’s and
PhD degrees in computer science in 1996 and
1999, respectively both from Ecole Normale
Sup�erieure de Lyon, at the LIP laboratory. After
the PhD degree, he spent one year as a postdoc
at the LaBRI laboratory in Bordeaux. He is a
research scientist at Institut National de
Recherche en Informatique et en Automatique
(INRIA) and he has been conducting his research
at INRIA Bordeaux Sud-Ouest and at the LaBRI
laboratory since September 2009. Before that,

he held the same position at INRIA Nancy Grand-Est. From January
2006 to July 2006, he was a visiting researcher at the University of
Tennessee, ICL laboratory. From September 1999 to September 2005,
he was an assistant professor at the Universit�e Henry Poincar�e, Nancy
1. During the period 2000-2009, he did research at the LORIA labora-
tory. His main research interests include scheduling for heterogeneous
environments and grids, data redistribution, algorithms and models for
parallel machines, grid computing software, adaptive online compres-
sion and programming models.

Guillaume Mercier received the PhD degree in
computer science from the University of Bor-
deaux in 2004. Since 2006, he has been an
assistant professor at the Bordeaux Polytechnic
Institute. He has been working on parallel pro-
gramming and MPI for more than 10 years and
has been involved in the development of several
MPI implementations, especially MPICH2, where
he participated in the design and development of
the NEMESIS communication layer. His research
interests encompass high-performance net-

works, hierarchical architectures management, parallel programming
paradigms, and message passing.

François Tessier received the master’s degree
in computer science in 2010 from the University
of Bordeaux. Since October 2011, he has been
working toward the PhD degree at both the
University of Bordeaux and Inria. His work
deals with process placement on heterogenous
architectures.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1002 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

