Communication and Topology-aware Load Balancing in
Charm++ with TreeMatch

IEEE Cluster 2013, Indianapolis, IN

Emmanuel Jeannot Esteban Meneses-Rojas Guillaume Mercier
Frangois Tessier ~ Gengbin Zheng

September 24, 2013

PARALLEL
PROGRAMMING
LABORATORY

7

E
EIE|

INVENTEURS DU MONDE NUMERIQUE

Francois Tessier Communication-aware load balancing

Introduction
Scalable execution of parallel applications

@ Number of cores is increasing

@ But memory per core is decreasing

@ Application will need to communicate even more than now
v
@ Process placement should take into account process affinity

@ Here: load balancing in Charm++ taking into account:

o load

o affinity

o topology

e migration cost (transfer time)

Francois Tessier Communication-aware load balancing 2/25

© Introduction

© Problem and models

e Load balancing for compute-bound applications

e Load balancing for communication-bound applications

© Conclusion

Francois Tessier Communication-aware load balancing 3/25

e Problem and models

Francois Tessier Communication-aware load balancing

Charm++
Featues

@ Parallel object-oriented programming language based on C++

@ Programs are decomposed into a number of cooperating message-driven
objects called chares.

@ In general we have more chares than processing units

@ Chares are mapped to physical processors by an adaptive runtime system

@ Load balancers can be called to migrate chares

@ Chares placement and load balancing is transparent for the programmer

Applications
LeanCP:Quantum | RocStar:Rocket
Molecular Dynamics | Simulation

NAMD: Classical
Molecular Dynamics

Changa: Cosmology
Simulation

F Tools
ParFUM: POSE: ” Faucets:

Unstructured Meshes PDES Job Scheduler

Projections:
L / Models Performance Analysis
MSA: Multiphased N Structured
Charisma Dagger (SDag) CharmDebug:
Debug Support

‘ Adaptive MPI

Shared Arrays
—

Charm++

Converse: Abstraction of the Machine Layers

One of the Machine Layers: Cluster of Linux Workstations, IBMs Blue Gene\L, SGI's
Altix, Cray’s XT3, Infiniband, Myrinet, Ethernet,and more

Charm+-+ Runtime System

Francois Tessier Communication-aware load balancing

Chares/Process Placement
Why we should consider it

@ Many current and future parallel platforms have several levels of hierarchy

@ Application Chares/processes do not exchange the same amount of data
(affinity)
@ The process placement policy may have impact on performance
o Cache hierarchy, memory bus, high-performance network...

@ In this work we deal with tree topologies only

Processor

Processor

[Core] [Core]

Francois Tessier Communication-aware load balancing 6/25

@ The parallel machine topology

@ The application communication pattern

@ Map application processes/chares to physical resources (cores) to reduce
the communication costs

zeus16.map

Receiver rank

Sender rank

Francois Tessier Communication-aware load balancing 7/25

TreeMatch
The TreeMatch Algorithm

@ Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology
@ Input :
o The communication pattern of the application

@ Preliminary execution with a monitored MPI implementation for static
placement
@ Dynamic recording on iterative applications with Charm++

o A model (tree) of the underlying architecture : Hwloc can provide us this.
o Output :

o A processes permutation o such that o; is the core number on which we
have to bind the process i

Francois Tessier Communication-aware load balancing 8/25

Receiver rank

example16.mat

Sender rank

o =(0,2,8,10,4,

6,12,14,1,3,9,

11,5,7,13,15)
.

Francois Tessier

Receiver rank

example16_TreeMatch.mat

Sender rank

ware load balancing

TreeMatch Vs. existing solution

@ Parallel Scotch
o (Par)Metis

Other static algorithms

o [Traff 02]: placement through graph embedding and graph partitioning

@ MPIPP [Chen et al. 2006]: placement through local exchange of processes

o LibTopoMap [Hoefler & Snir 11]: placement through network model +
graph partitioning (ParMetis)

Other topology-aware load-balacing algorithms
o [L. L. Pilla, et al. 2012] NUCOLB, shared memory machines
o [L. L. Pilla, et al. 2012] HwTopolLB

All these solution requires quantitative information about the network and the
communication duration.

TreeMatch: only qualitative information about the topology (the structure) is
required.

Francois Tessier Communication-aware load balancing 10 /25

Load balancing

@ lterative applications

@ load balancer called at regular interval

@ Migrate chares in order to optimize several criteria

@ Charm++ runtime system provides:

o chares load
o chares affinity

e etc...)

@ Dealing with complex modern architectures

@ Taking into account communications between elements

@ Cost of migrations

Francois Tessier Communication-aware load balancing 11 /25

Several issues raised

@ Scalability of TreeMatch

@ Need to find a relevant compromise between processes affinities and load
balancing

o Compute-bound applications
o Communication-bound applications

@ Impact of chares migrations? What about load balancing time?

The next slides will present two load balancers relying on TreeMatch

o TMLB_Min_Weight which applies a communication-aware load balancing
by favoring the CPU load levelling and minimizing migrations

@ TMLB_TreeBased which performs a parallel communication-aware load
balancing by giving advantage to the minimization of communication cost.

v

Francois Tessier Communication-aware load balancing 12 /25

© Load balancing for compute-bound applications

Francois Tessier Communication-aware load balancing 13 /25

Strategy for Charm—++

TMLB_ Min_ Weight

o Applies TreeMatch on all chares (fake topology : #leaves = #-chares)

YNNI

Chares

Francois Tessier Communication-aware load balancing 14 /25

Strategy for Charm—++

TMLB_ Min_ Weight

o Applies TreeMatch on all chares (fake topology : #leaves = #-chares)

@ Binds chares according to their load, leveling on less loaded chares (see

example below)

Sort each part by CPU load

oAb

| Chares placement + Load balancing -> groups of chares | 7

Chares

CPU Load

Francois Tessier Communication-aware load balancing 14 /25

Strategy for Charm—++

TMLB_ Min_ Weight

o Applies TreeMatch on all chares (fake topology : #leaves = #-chares)

@ Binds chares according to their load, leveling on less loaded chares (see
example below)

@ Hungarian algorithm to minimize the migrations (min. weight matching)

Groups
Bt41414
3x444f]4a
43xP4444
4433440
H444x4a34
4434 %44
434484 x3
444343H

Cores

o~
00 o 0000
TT——————— 7 4 77

Groups of chares

CPU Load

B cost of migrating group j to core i

= To minimize migrations, it's better
to move the group of chares 0 to core
4

Francois Tessier Communication-aware load balancing 14 /25

@ Molecular Dynamics application

@ Massive unbalance, few communications

@ Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)

Execution time (in seconds)

350

300

250

200

150

100

50

LeanMD on 64 cores - 960 chares

T T
Baseline —+—
GreedyLB
RefinelLB —x—
TMLB_min_weight

500 1000

Francois Tessier

1500 2000 2500
Particles per cell

Communication-aware load balancing

3000

15/25

LeanMD - Migrations

o Comparing to TMLB_Min_Weight without minimizing migrations :
o Execution time up to 5% better
e Around 200 migrations less

Number of migrated chares

900
800
700
600
500
400
300
200

100 -

Number of migrated chares in LeanMD
960 chares - 64 cores

AR H——H——H——]
1 1 1 1 1

500

1000 1500 2000
Particles per cell

Francois Tessier

2500 3000

GreedyLB
RefineLB —>¢—
TMLB_min_weight

Communication-aware load balancing 16 /25

@ Load balancing for communication-bound applications

Francois Tessier Communication-aware load balancing 17 /25

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

000060 66060
Uo00 ool

Groups of chares assigned to cores

o
®
o

=

)
Q
o

Francois Tessier Communication-aware load balancing 18 /25

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

@ 2™ step : Reorders chares inside
each node

O ©06 0
el 0e

Groups of chares assigned to cores

Francois Tessier Communication-aware load balancing 18 /25

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

@ 2™ step : Reorders chares inside
each node

o Defines the subtree

Oeo0s

Groups of chares
assigned to cores

CPU Load

Francois Tessier Communication-aware load balancing

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

@ 2™ step : Reorders chares inside
each node
o Defines the subtree

o Creates a fake topology with as
much leaves as the number of
chares + something...

(constraints)

Chares

Francois Tessier Communication-aware load balancing

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

@ 2™ step : Reorders chares inside
each node

o Defines the subtree

o Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)

o Applies TreeMatch on this
topology and the chares
communication pattern

Chares

Francois Tessier Communication-aware load balancing

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

@ 2™ step : Reorders chares inside
each node

o Defines the subtree

o Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)

o Applies TreeMatch on this
topology and the chares
communication pattern

o Binds chares according to their
load (leveling on less loaded
chares)

Chares

Francois Tessier Communication-aware load balancing

Strategy for Charm—++

TMLB_ TreeBased

o 1° step : Applies TreeMatch while
considering groups of chares on
cores

@ 2™ step : Reorders chares inside
each node

o Defines the subtree
o Creates a fake topology with as
much leaves as the number of

E(};srrzir;nstZTething... |é é é G é é é é|
0000 oo0o

o Applies TreeMatch on this
Groups of chares assigned to cores

o
®
o

=

topology and the chares g
communication pattern

o Binds chares according to their
load (leveling on less loaded
chares)

o Each node in parallel

Francois Tessier Communication-aware load balancing

Results

kNeighbor

@ Benchmarks application designed to simulate intensive communication
between processes

@ Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
@ Particularly compared to RefineCommLB

o Takes into account load and communication
e Minimizes migrations

kNeighbor on 64 cores kNeighbor on 64 cores kNeighbor on 64 cores
64 elements - 1MB message size 128 elements — 1MB message size 256 elements — 1MB message size

g g ™ g

§ 300 § 600 §

o 250 3 500 2 1500

£ 200 £ 400 =

o o 21000

E 150 £ 300 £

c c c

g 100 g 200 £ 500

3 50 3 E

9] g 100 9]

2 2 2

i g w9 Yoo

DummyLB
GreedyLB
DummyLB
GreedyLB
DummyLB
GreedyLB

RefineCommLB

GreedyCommLB
RefineCommLB
TMLB_TreeBased
GreedyCommLB
RefineCommLB
TMLB_TreeBased
GreedyCommLB
TMLB_TreeBased

ois Tessier Communication-aware load balancing

Impact on communication

@ Communications evolution between ten iterations

Communication between 10 iterations without
any load balancing strategy
(in thousands of messages sent)

O

864 864

O, O

652 640 672 692

© () © O

348380 404372 392400 412376

0006006006

Francois Tessier

Communication between 10 iterations after
the first call of TreeMatchLB
(in thousands of messages sent)

O

800 800

O, O

620 636 688 664

© () () o

364376 396376 420404 360408

000660006

Communication-aware load balancing

20/25

Results

Stencil3D

@ 3 dimensional stencil with regular Stencil3D on 64 cores - 64 elements
communication with fixed neighbors B 200+
c
@ One chare per core : balance only S 1501
considering communications c
. () 4
@ Only one load balancing step after 10 g 00
. . =
Iterations £ o
@ Experiments on 8 nodes with 8 cores on ¢
w d
each (Intel Xeon 5550) 0

DummyLB
GreedyLB

RefineCommLB

GreedyCommLB
TMLB_TreeBased

Francois Tessier Communication-aware load balancing 21/25

What about the load balancing time?

@ Linear trajectory while the number of chares is doubled
o TMLB _TreeBased is clearly slower than the other strategies

@ But the parallel version is almost implemented. . .

Execution time of load balancing
strategies (running on 64 cores)

10000 T DummyLB —+—
GreedyCommLB

1000 = q GreedylLB

I RefineCommLB —&+

£ 100 - 4 TMLB_TreeBased

c

= —f

] 10 - =) 4

£ [

=1

s L 3

=l

9 01t]

>

w

oorfp 0+

0.001 L
64 128 256

Number of chares

Figure : Load balancing time of the different strategies vs. number of chares for the
KNeighbor application.

Francois Tessier Communication-aware load balancing 22/25

© Conclusion

Francois Tessier Communication-aware load balancing 23/25

Conclusion and Future

@ Topology is not flat!

Processes affinities are not homogeneous

Take into account these information to map chares give us improvement

Need to distinguish between compute-bound and communication-bound
application

@ Several criteria taken into account: affinity, topology, load, migration cost,
etc. ..

o Find a better way to gather the topology (Hwloc?)

@ Distribute and parallelize TMLB_ TreeBased on the different nodes (work
in progess with the PPL)

@ Make TMLB _TreeBased more scalable for large scale clusters: allow to
chose the level in the hierarchy where the algorithm will be distributed

@ Hybrid architecture? Intel MIC?

@ Continue collaborations between Inria and PPL

Francois Tessier Communication-aware load balancing 24 /25

The End

Thanks for your attention |
Any questions?

Francois Tessier Communication-aware load balancing

	Introduction
	Problem and models
	Load balancing for compute-bound applications
	Load balancing for communication-bound applications
	Conclusion

