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Introduction

Scalable execution of parallel applications

Number of cores is increasing

But memory per core is decreasing

Application will need to communicate even more than now

Our solution

Process placement should take into account process affinity
Here: load balancing in Charm++ taking into account:

load
affinity
topology
migration cost (transfer time)
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Charm++

Features

Parallel object-oriented programming language based on C++

Programs are decomposed into a number of cooperating message-driven
objects called chares.
In general we have more chares than processing units

Chares are mapped to physical processors by an adaptive runtime system

Load balancers can be called to migrate chares

Chares placement and load balancing is transparent for the programmer
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Chares/Process Placement

Why we should consider it

Many current and future parallel platforms have several levels of hierarchy

Application Chares/processes do not exchange the same amount of data
(affinity)
The process placement policy may have impact on performance

Cache hierarchy, memory bus, high-performance network...

In this work we deal with tree topologies only

Switch

Cabinet Cabinet

... Node Node

... Processor Processor

Core Core Core Core

François Tessier Communication-aware load balancing 6 / 25



Problems

Given

The parallel machine topology

The application communication pattern

Map application processes/chares to physical resources (cores) to reduce
the communication costs

5 10 15

5
10

15

zeus16.map

Sender rank

R
ec

ei
ve

r 
ra

nk

0
1

2
3

4
5

6
7

François Tessier Communication-aware load balancing 7 / 25



TreeMatch

The TreeMatch Algorithm

Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology
Input :

The communication pattern of the application
Preliminary execution with a monitored MPI implementation for static
placement
Dynamic recording on iterative applications with Charm++

A model (tree) of the underlying architecture : Hwloc can provide us this.
Output :

A processes permutation σ such that σi is the core number on which we
have to bind the process i
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Example
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TreeMatch Vs. existing solution

Graph partitionners

Parallel Scotch

(Par)Metis

Other static algorithms

[Träff 02]: placement through graph embedding and graph partitioning

MPIPP [Chen et al. 2006]: placement through local exchange of processes

LibTopoMap [Hoefler & Snir 11]: placement through network model +
graph partitioning (ParMetis)

Other topology-aware load-balacing algorithms

[L. L. Pilla, et al. 2012] NUCOLB, shared memory machines

[L. L. Pilla, et al. 2012] HwTopoLB

All these solution requires quantitative information about the network and the
communication duration.
TreeMatch: only qualitative information about the topology (the structure) is
required.
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Load balancing

Principle

Iterative applications

load balancer called at regular interval

Migrate chares in order to optimize several criteria
Charm++ runtime system provides:

chares load
chares affinity
etc. . .

Constraints

Dealing with complex modern architectures

Taking into account communications between elements

Cost of migrations
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Several issues raised

Not so easy...

Scalability of TreeMatch
Need to find a relevant compromise between processes affinities and load
balancing

Compute-bound applications
Communication-bound applications

Impact of chares migrations? What about load balancing time?

The next slides will present two load balancers relying on TreeMatch

TMLB_Min_Weight which applies a communication-aware load balancing
by favoring the CPU load levelling and minimizing migrations

TMLB_TreeBased which performs a parallel communication-aware load
balancing by giving advantage to the minimization of communication cost.
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Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load, leveling on less loaded chares (see
example below)

Hungarian algorithm to minimize the migrations (min. weight matching)

Chares
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Results

LeanMD

Molecular Dynamics application

Massive unbalance, few communications

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
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Results

LeanMD - Migrations

Comparing to TMLB_Min_Weight without minimizing migrations :
Execution time up to 5% better
Around 200 migrations less
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Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel
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Results

kNeighbor

Benchmarks application designed to simulate intensive communication
between processes

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
Particularly compared to RefineCommLB

Takes into account load and communication
Minimizes migrations
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Results

Impact on communication

Communications evolution between ten iterations
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Results

Stencil3D

3 dimensional stencil with regular
communication with fixed neighbors

One chare per core : balance only
considering communications

Only one load balancing step after 10
iterations

Experiments on 8 nodes with 8 cores on
each (Intel Xeon 5550)
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Results

What about the load balancing time?

Linear trajectory while the number of chares is doubled

TMLB_TreeBased is clearly slower than the other strategies

But the parallel version is almost implemented. . .
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Conclusion and Future

Conclusion

Topology is not flat!

Processes affinities are not homogeneous

Take into account these information to map chares give us improvement

Need to distinguish between compute-bound and communication-bound
application

Several criteria taken into account: affinity, topology, load, migration cost,
etc. . .

Future work

Find a better way to gather the topology (Hwloc?)

Distribute and parallelize TMLB_TreeBased on the different nodes (work
in progess with the PPL)

Make TMLB_TreeBased more scalable for large scale clusters: allow to
chose the level in the hierarchy where the algorithm will be distributed

Hybrid architecture? Intel MIC?

Continue collaborations between Inria and PPL
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The End

Thanks for your attention !
Any questions?
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