
Communication and Topology-aware Load Balancing in
Charm++ with TreeMatch
IEEE Cluster 2013, Indianapolis, IN

Emmanuel Jeannot Esteban Meneses-Rojas Guillaume Mercier
François Tessier Gengbin Zheng

September 24, 2013

François Tessier Communication-aware load balancing 1 / 25

Introduction

Scalable execution of parallel applications

Number of cores is increasing

But memory per core is decreasing

Application will need to communicate even more than now

Our solution

Process placement should take into account process affinity
Here: load balancing in Charm++ taking into account:

load
affinity
topology
migration cost (transfer time)

François Tessier Communication-aware load balancing 2 / 25

Outline

1 Introduction

2 Problem and models

3 Load balancing for compute-bound applications

4 Load balancing for communication-bound applications

5 Conclusion

François Tessier Communication-aware load balancing 3 / 25

Outline

1 Introduction

2 Problem and models

3 Load balancing for compute-bound applications

4 Load balancing for communication-bound applications

5 Conclusion

François Tessier Communication-aware load balancing 4 / 25

Charm++

Features

Parallel object-oriented programming language based on C++

Programs are decomposed into a number of cooperating message-driven
objects called chares.
In general we have more chares than processing units

Chares are mapped to physical processors by an adaptive runtime system

Load balancers can be called to migrate chares

Chares placement and load balancing is transparent for the programmer

François Tessier Communication-aware load balancing 5 / 25

Chares/Process Placement

Why we should consider it

Many current and future parallel platforms have several levels of hierarchy

Application Chares/processes do not exchange the same amount of data
(affinity)
The process placement policy may have impact on performance

Cache hierarchy, memory bus, high-performance network...

In this work we deal with tree topologies only

Switch

Cabinet Cabinet

... Node Node

... Processor Processor

Core Core Core Core

François Tessier Communication-aware load balancing 6 / 25

Problems

Given

The parallel machine topology

The application communication pattern

Map application processes/chares to physical resources (cores) to reduce
the communication costs

5 10 15

5
10

15

zeus16.map

Sender rank

R
ec

ei
ve

r
ra

nk

0
1

2
3

4
5

6
7

François Tessier Communication-aware load balancing 7 / 25

TreeMatch

The TreeMatch Algorithm

Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology
Input :

The communication pattern of the application
Preliminary execution with a monitored MPI implementation for static
placement
Dynamic recording on iterative applications with Charm++

A model (tree) of the underlying architecture : Hwloc can provide us this.
Output :

A processes permutation σ such that σi is the core number on which we
have to bind the process i

François Tessier Communication-aware load balancing 8 / 25

Example

5 10 15

5
10

15

example16.mat

Sender rank

R
ec

ei
ve

r
ra

nk

0
1

2
3

4
5

6
7

σ =(0,2,8,10,4,
6,12,14,1,3,9,
11,5,7,13,15)

=⇒

5 10 15

5
10

15

example16_TreeMatch.mat

Sender rank

R
ec

ei
ve

r
ra

nk

0
1

2
3

4
5

6
7

François Tessier Communication-aware load balancing 9 / 25

TreeMatch Vs. existing solution

Graph partitionners

Parallel Scotch

(Par)Metis

Other static algorithms

[Träff 02]: placement through graph embedding and graph partitioning

MPIPP [Chen et al. 2006]: placement through local exchange of processes

LibTopoMap [Hoefler & Snir 11]: placement through network model +
graph partitioning (ParMetis)

Other topology-aware load-balacing algorithms

[L. L. Pilla, et al. 2012] NUCOLB, shared memory machines

[L. L. Pilla, et al. 2012] HwTopoLB

All these solution requires quantitative information about the network and the
communication duration.
TreeMatch: only qualitative information about the topology (the structure) is
required.

François Tessier Communication-aware load balancing 10 / 25

Load balancing

Principle

Iterative applications

load balancer called at regular interval

Migrate chares in order to optimize several criteria
Charm++ runtime system provides:

chares load
chares affinity
etc. . .

Constraints

Dealing with complex modern architectures

Taking into account communications between elements

Cost of migrations

François Tessier Communication-aware load balancing 11 / 25

Several issues raised

Not so easy...

Scalability of TreeMatch
Need to find a relevant compromise between processes affinities and load
balancing

Compute-bound applications
Communication-bound applications

Impact of chares migrations? What about load balancing time?

The next slides will present two load balancers relying on TreeMatch

TMLB_Min_Weight which applies a communication-aware load balancing
by favoring the CPU load levelling and minimizing migrations

TMLB_TreeBased which performs a parallel communication-aware load
balancing by giving advantage to the minimization of communication cost.

François Tessier Communication-aware load balancing 12 / 25

Outline

1 Introduction

2 Problem and models

3 Load balancing for compute-bound applications

4 Load balancing for communication-bound applications

5 Conclusion

François Tessier Communication-aware load balancing 13 / 25

Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load, leveling on less loaded chares (see
example below)

Hungarian algorithm to minimize the migrations (min. weight matching)

Chares

François Tessier Communication-aware load balancing 14 / 25

Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load, leveling on less loaded chares (see
example below)

Hungarian algorithm to minimize the migrations (min. weight matching)

Chares

Chares placement + Load balancing -> groups of chares

C
P

U
 L

oa
d

Sort each part by CPU load

François Tessier Communication-aware load balancing 14 / 25

Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load, leveling on less loaded chares (see
example below)

Hungarian algorithm to minimize the migrations (min. weight matching)

*URXSV�RI�FKDUHV

&
3
8
�/
RD
G

;���������������������
���;������������������
������;���������������
���������;������������
������������;���������
���������������;������
������������������;���
���������������������;

������FRVW�RI�PLJUDWLQJ�JURXS�M�WR�FRUH�L

�����7R�PLQLPL]H�PLJUDWLRQV��LW
V�EHWWHU�
WR�PRYH�WKH�JURXS�RI�FKDUHV���WR�FRUH�
�

*URXSV

&
RU
HV

François Tessier Communication-aware load balancing 14 / 25

Results

LeanMD

Molecular Dynamics application

Massive unbalance, few communications

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

Particles per cell

LeanMD on 64 cores - 960 chares

Baseline
GreedyLB
RefineLB

TMLB_min_weight

François Tessier Communication-aware load balancing 15 / 25

Results

LeanMD - Migrations

Comparing to TMLB_Min_Weight without minimizing migrations :
Execution time up to 5% better
Around 200 migrations less

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000

N
u
m

b
e
r

o
f

m
ig

ra
te

d
 c

h
a
re

s

Particles per cell

Number of migrated chares in LeanMD
960 chares - 64 cores

GreedyLB
RefineLB

TMLB_min_weight

François Tessier Communication-aware load balancing 16 / 25

Outline

1 Introduction

2 Problem and models

3 Load balancing for compute-bound applications

4 Load balancing for communication-bound applications

5 Conclusion

François Tessier Communication-aware load balancing 17 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier Communication-aware load balancing 18 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier Communication-aware load balancing 18 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Groups of chares
assigned to cores

C
P

U
 L

oa
d

François Tessier Communication-aware load balancing 18 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

Chares

François Tessier Communication-aware load balancing 18 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Chares

François Tessier Communication-aware load balancing 18 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Chares

François Tessier Communication-aware load balancing 18 / 25

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier Communication-aware load balancing 18 / 25

Results

kNeighbor

Benchmarks application designed to simulate intensive communication
between processes

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
Particularly compared to RefineCommLB

Takes into account load and communication
Minimizes migrations

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

50

100

150

200

250

300

kNeighbor on 64 cores
64 elements − 1MB message size

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

100

200

300

400

500

600

700

kNeighbor on 64 cores
128 elements − 1MB message size

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

500

1000

1500

2000

kNeighbor on 64 cores
256 elements − 1MB message size

François Tessier Communication-aware load balancing 19 / 25

Results

Impact on communication

Communications evolution between ten iterations

864 864

652 640 672 692

348380 404372 392400 412376

1 2 3 4 5 6 7 8

Communication between 10 iterations without
any load balancing strategy

(in thousands of messages sent)

800 800

620 636 688 664

364376 396376 420404 360408

1 2 3 4 5 6 7 8

Communication between 10 iterations after
the first call of TreeMatchLB

(in thousands of messages sent)

François Tessier Communication-aware load balancing 20 / 25

Results

Stencil3D

3 dimensional stencil with regular
communication with fixed neighbors

One chare per core : balance only
considering communications

Only one load balancing step after 10
iterations

Experiments on 8 nodes with 8 cores on
each (Intel Xeon 5550)

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

50

100

150

200

Stencil3D on 64 cores − 64 elements

François Tessier Communication-aware load balancing 21 / 25

Results

What about the load balancing time?

Linear trajectory while the number of chares is doubled

TMLB_TreeBased is clearly slower than the other strategies

But the parallel version is almost implemented. . .

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

64 128 256

E
xe

cu
ti

o
n
 t

im
e
 (

in
 m

s)

Number of chares

Execution time of load balancing
strategies (running on 64 cores)

DummyLB
GreedyCommLB

GreedyLB
RefineCommLB

TMLB_TreeBased

Figure : Load balancing time of the different strategies vs. number of chares for the
KNeighbor application.

François Tessier Communication-aware load balancing 22 / 25

Outline

1 Introduction

2 Problem and models

3 Load balancing for compute-bound applications

4 Load balancing for communication-bound applications

5 Conclusion

François Tessier Communication-aware load balancing 23 / 25

Conclusion and Future

Conclusion

Topology is not flat!

Processes affinities are not homogeneous

Take into account these information to map chares give us improvement

Need to distinguish between compute-bound and communication-bound
application

Several criteria taken into account: affinity, topology, load, migration cost,
etc. . .

Future work

Find a better way to gather the topology (Hwloc?)

Distribute and parallelize TMLB_TreeBased on the different nodes (work
in progess with the PPL)

Make TMLB_TreeBased more scalable for large scale clusters: allow to
chose the level in the hierarchy where the algorithm will be distributed

Hybrid architecture? Intel MIC?

Continue collaborations between Inria and PPL

François Tessier Communication-aware load balancing 24 / 25

The End

Thanks for your attention !
Any questions?

François Tessier Communication-aware load balancing 25 / 25

	Introduction
	Problem and models
	Load balancing for compute-bound applications
	Load balancing for communication-bound applications
	Conclusion

