
Distributed communication-aware load balancing with
TreeMatch in Charm++

The 9th Scheduling for Large Scale Systems Workshop, Lyon, France

Emmanuel Jeannot Guillaume Mercier Francois Tessier
In collaboration with the Charm++ Team from the PPL (UIUC, IL) :

Esteban Meneses-Rojas, Gengbin Zheng, Sanjay Kale

July 1, 2014

Francois Tessier TreeMatch in Charm++ 1/ 19

Introduction

Scalable execution of parallel applications

Number of cores is increasing

But memory per core is decreasing

Application will need to communicate even more than now

Our solution

Process placement should take into account process affinity
Here: load balancing in Charm++ considering :

CPU load
process affinity (or other communicating objects)
topology : network and intra-node

Francois Tessier TreeMatch in Charm++ 2/ 19

Charm++

Features

Parallel object-oriented programming language based on C++

Programs are decomposed into a number of cooperating message-driven
objects called chares.
In general we have more chares than processing units

Chares are mapped to physical processors by an adaptive runtime system

Load balancers can be called to migrate chares

Charm++ is able to use MPI for the processes communications

Francois Tessier TreeMatch in Charm++ 3/ 19

Processes Placement

Why we should consider it

Many current and future parallel platforms have several levels of hierarchy

Application chares/processes do not exchange the same amount of data
(affinity)
The process placement policy may have impact on performance

Cache hierarchy, memory bus, high-performance network...

Switch

Cabinet Cabinet

... Node Node

... Processor Processor

Core Core Core Core

Francois Tessier TreeMatch in Charm++ 4/ 19

Problems

Given

The parallel machine topology

The application communication pattern

Map application processes to physical resources (cores) to reduce the
communication costs (NP-complete)

5 10 15

5
10

15

zeus16.map

Sender rank

R
ec

ei
ve

r
ra

nk

0
1

2
3

4
5

6
7

Francois Tessier TreeMatch in Charm++ 5/ 19

TreeMatch

The TreeMatch Algorithm

Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology
Input :

The communication pattern of the application
Preliminary execution with a monitored MPI implementation for static
placement
Dynamic recovery on iterative applications with Charm++

A model (tree) of the underlying architecture : Hwloc can provide us this.
Output :

A processes permutation σ such that σi is the core number on which we
have to bind the process i

TreeMatch can only work on tree topologies. How to deal with 3d torus ?

Francois Tessier TreeMatch in Charm++ 6/ 19

Network placement

libtopomap

T. Hoefler and M. Snir, "Generic Topology Mapping Strategies for
Large-Scale Parallel Architectures" Proc. Int’l Conf. Supercomputing
(ICS), pp. 75-84, 2011.

Library that enables to map processes on various network topologies

Used in TreeMatchLB to consider the Blue Waters 3d torus

Figure: 3d Torus and a Cray Gemini router

Francois Tessier TreeMatch in Charm++ 7/ 19

Load balancing

Principle

Iterative applications

load balancer called at regular interval

Migrate chares in order to optimize several criteria
Charm++ runtime system provides:

chares load
chares affinity
etc. . .

Constraints

Dealing with complex modern architectures

Taking into account communications between elements

Some other communication-aware load-balacing algorithms

[L. L. Pilla, et al. 2012] NUCOLB, shared memory machines

[L. L. Pilla, et al. 2012] HwTopoLB

Some "built-in" Charm++ load balancers : RefineCommLB,
GreedyCommLB. . .

Francois Tessier TreeMatch in Charm++ 8/ 19

Several issues raised

Not so easy...

Several issues raised!

Scalability of TreeMatch
How to deal with process mapping (user, core numbering)

Intel Xeon 5550 : 0,2,4,6,1,3,5,7
Intel Xeon 5550 : 0,1,2,3,4,5,6,7 (!!)
AMD Interlagos : 0,1,2,3,4,5,6,7...,30,31

Need to find a relevant compromise between processes affinities and load
balancing

What about load balancing time?

The next slides will present our load balancer relying on TreeMatch and
libtopomap which performs a parallel and distributed communication-aware
load balancing.

Francois Tessier TreeMatch in Charm++ 9/ 19

Strategy for Charm++ - Network Placement

First step : minimize communication cost on network

libtopomap reorders processes from a communicator
How to use it to reorder groups of processes (or chares) ? Example :
groups of chares on nodes

Charm++ uses MPI : full access to the MPI API
New MPI communicator with MPI_Comm_split

0 1 2 3

Network (3d torus, tree, …)

Nodes

New communicator

Francois Tessier TreeMatch in Charm++ 10 / 19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

1st step : Remap groups of chares
on nodes according to the
communication on the network

libtopomap (example : part of
3d Torus)

2nd step : Reorder chares inside
each node (distributed)

Apply TreeMatch on the NUMA
topology and the chares
communication pattern
Bind chares according to their
load (leveling on less loaded
chares)
Each node carries out its own
placement in parallel

3 6 8 9 12 14 15 16

Groups of chares assigned to nodes

C
P

U
 L

oa
d

Network (3d torus, hierarchical, …)

Francois Tessier TreeMatch in Charm++ 11 / 19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

1st step : Remap groups of chares
on nodes according to the
communication on the network

libtopomap (example : part of
3d Torus)

2nd step : Reorder chares inside
each node (distributed)

Apply TreeMatch on the NUMA
topology and the chares
communication pattern
Bind chares according to their
load (leveling on less loaded
chares)
Each node carries out its own
placement in parallel Figure: Part of a 3d Torus attributed by

the resource manager

Francois Tessier TreeMatch in Charm++ 11 / 19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

1st step : Remap groups of chares
on nodes according to the
communication on the network

libtopomap (example : part of
3d Torus)

2nd step : Reorder chares inside
each node (distributed)

Apply TreeMatch on the NUMA
topology and the chares
communication pattern
Bind chares according to their
load (leveling on less loaded
chares)
Each node carries out its own
placement in parallel

0 2 4 6 0 2 4 6

Groups of chares assigned to cores

C
P

U
 L

oa
d

Network (3d torus, hierarchical, …)

3 ...

Francois Tessier TreeMatch in Charm++ 11 / 19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

1st step : Remap groups of chares
on nodes according to the
communication on the network

libtopomap (example : part of
3d Torus)

2nd step : Reorder chares inside
each node (distributed)

Apply TreeMatch on the NUMA
topology and the chares
communication pattern
Bind chares according to their
load (leveling on less loaded
chares)
Each node carries out its own
placement in parallel

0 2 4 6

Chares

Francois Tessier TreeMatch in Charm++ 11 / 19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

1st step : Remap groups of chares
on nodes according to the
communication on the network

libtopomap (example : part of
3d Torus)

2nd step : Reorder chares inside
each node (distributed)

Apply TreeMatch on the NUMA
topology and the chares
communication pattern
Bind chares according to their
load (leveling on less loaded
chares)
Each node carries out its own
placement in parallel

0 2 4 6

Chares

Francois Tessier TreeMatch in Charm++ 11 / 19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

1st step : Remap groups of chares
on nodes according to the
communication on the network

libtopomap (example : part of
3d Torus)

2nd step : Reorder chares inside
each node (distributed)

Apply TreeMatch on the NUMA
topology and the chares
communication pattern
Bind chares according to their
load (leveling on less loaded
chares)
Each node carries out its own
placement in parallel

0 2 4 6 0 2 4 6

Groups of chares assigned to cores

C
P

U
 L

oa
d

Network (3d torus, hierarchical, …)

Francois Tessier TreeMatch in Charm++ 11 / 19

Results

commBench

Benchmark designed to simulate irregular communications

Experiments on 16 nodes with 32 cores on each (AMD Interlagos 6276) -
Blue Waters Cluster)

1 MB messages - 100 iterations - 2 distant receivers for each chare

0
50

10
0

15
0

D
um

m
yL

B

R
ef

in
eC

om
m

LB

Tr
ee

M
at

ch
LB

A
ve

ra
ge

 ti
m

e
of

 o
ne

 it
er

at
io

n
in

 m
s

commBench on 512 cores
8192 elements − 1MB message size

Francois Tessier TreeMatch in Charm++ 12 / 19

Results

commBench

1 MB messages - 100 iterations - 2 distant receivers for each chare

TreeMatch applied on a chares communication matrix

5 10 15

5
10

15

Chares comm matrix − CommBench − 1 PlaFRIM node

Sender rank

R
ec

ei
ve

r
ra

nk

0
10

00
20

00
30

00
40

00

TreeMatch

5 10 15

5
10

15

Chares comm matrix − CommBench − 1 PlaFRIM node

Sender rank

R
ec

ei
ve

r
ra

nk

0
10

00
20

00
30

00
40

00

Figure: σ(i) = 0, 8, 4, 5, 12, 1, 9, 6, 14, 2, 3, 13, 7, 10, 11, 15

Francois Tessier TreeMatch in Charm++ 13 / 19

Results

kNeighbor

Benchmarks application designed to simulate regular intensive
communication between processes

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550) - PlaFRIM
Cluster
Particularly compared to RefineCommLB

Takes into account load and communication
Minimizes migrations

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

100

200

300

400

500

600

700

kNeighbor on 64 cores
128 elements − 1MB message size

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

500

1000

1500

2000

kNeighbor on 64 cores
256 elements − 1MB message size

Francois Tessier TreeMatch in Charm++ 14 / 19

Results

kNeighbor

Experiments on 16 nodes with 8 cores on each (Intel Xeon 5550) -
PlaFRIM Cluster

1 MB messages - 100 iterations - 7-Neighbor

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16

A
v
e
ra

g
e
 t

im
e
 f

o
r

e
a
ch

 7
-k

N
e
ig

h
b

o
r

it
e
ra

ti
o
n
 (

in
 m

s)

Number of chares by core

Execution time versus chares by core

DummyLB 0-7
TreeMatchLB

DummyLB 0,2,4,6,1,3,5,7

Francois Tessier TreeMatch in Charm++ 15 / 19

Results

What about the load balancing time?

Comparison between the sequential and the distributed versions of
TreeMatchLB

The master node distributes the data to each node which will compute its
own chares placement. This data distribution can be done in parallel
(around 20% of improvments)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Sequential

Distributed

Sequential

Distributed

Sequential

Distributed

T
im

e
 i
n
 s

e
co

n
d

s

Time repartition for each step of the load balancing process

Initialization
TM Sequential

TM Parallel

1638481924096

Francois Tessier TreeMatch in Charm++ 16 / 19

Results

What about the load balancing time?

Comparison between the sequential and the distributed versions of
TreeMatchLB

The master node distributes the data to each node which will compute its
own chares placement. This data distribution can be done in parallel
(around 20% of improvments)

7

6

5

4

3

2

1

0

Master

 165.6 165.7 165.8 165.9 166 166.1 166.2

time

4096 Chares - reverse - Par

Init
Process results

Distribute
Calculate

Return

Francois Tessier TreeMatch in Charm++ 16 / 19

Results

What about the load balancing time?

Linear trajectory while the number of chares is doubled

TreeMatchLB is slower than the other Greedy strategies

RefineCommLB which provides some good results for
communication-bound applications is not scalable (fails from 8192 chares)

 0.1

 1

 10

 100

 1000

 10000

128 256 512 1024 2048 4096 8192

E
x
e
cu

ti
o
n
 t

im
e
 (

in
 m

s)

Number of chares

Execution time of load balancing
strategies (running on 128 cores)

GreedyCommLB
GreedyLB

RefineCommLB
TreeMatchLB

Figure: Load balancing time of the different strategies vs. number of chares for the
KNeighbor application.

Francois Tessier TreeMatch in Charm++ 17 / 19

Future work and Conclusion

The end

Topology is not flat!

Processes affinities are not homogeneous

Take into account these information to map chares give us improvement

Algorithm adapted to large problems (Distributed)

Published at IEEE Cluter 2013

Future work

Find a better way to gather the topology (Hwloc?)

Improve network part (BGQ routing ?)

Perform more large scale experiments

Evaluate our solution on other applications (CFD ?)

Francois Tessier TreeMatch in Charm++ 18 / 19

The End

Thanks for your attention !
Any questions?

Francois Tessier TreeMatch in Charm++ 19 / 19

