
Context Problems Static Placement Dynamic placement Conclusion

Placement of Parallel Applications According to the Topology and
the Affinity
PhD Defense

Francois Tessier
Emmanuel Jeannot - Guillaume Mercier

Inria - LaBRI - University of Bordeaux

January 26, 2015

1 / 56

Context Problems Static Placement Dynamic placement Conclusion

Simulations

Figure: Heart modelling

I Computer simulation: one of the pillar of
science and industry

Climate simulation, heart modelling,
cosmology, etc.

I Large needs of performance
The Human Brain Project goes after at
least 1 ExaFLOPS (1018 FLOPS) to
simulate the brain’s neurons

I Main challenge: scale these applications
I More parallelization is the only way to

meet these requirements
I Implies massively parallel supercomputers

2 / 56

Context Problems Static Placement Dynamic placement Conclusion

Supercomputers

I Growth of supercomputers to
meet the performance needs

#Nodes Cores/Node
2011 ∼ 20K 12
2012 ∼ 10K − 100K 16 - 32
2015 ∼ 5K − 50K 100 - 1 000
2018 ∼ 100K − 1000K 1 000 - 10 000

Source: European Exascale Software
Intiative.

I The Blue Waters example
More than 400 000 cores
Spread to 27 000 nodes
Peak performance: 13.34
PetaFLOPS

Figure: The Blue Waters platform

3 / 56

Context Problems Static Placement Dynamic placement Conclusion

Complex architectures

I Price to pay for the users: topologies
are more and more complex

I Complexity of interconnection
networks

I Memory hierarchy leading to more
NUMA effects

Thermal issues for memory banks
Gap increasing between the
processor and memory performance

Performance rate
Processor +60%/y
Memory +10%/y

Not only a power issue but also a
bandwidth issue

Node

RAM

L3

L2

L1

0

L2

L1

2

L2

L1

4

L2

L1

6

RAM

L3

L2

L1

1

L2

L1

3

L2

L1

5

L2

L1

7

Node

NodeNode Network

Figure: Typical architecture in HPC

4 / 56

Context Problems Static Placement Dynamic placement Conclusion

Outline

1 Context

2 Problems

3 Static placement

4 Dynamic placement

5 Conclusion

5 / 56

Context Problems Static Placement Dynamic placement Conclusion

Outline

1 Context

2 Problems

3 Static placement

4 Dynamic placement

5 Conclusion

6 / 56

Context Problems Static Placement Dynamic placement Conclusion

Data Locality

I More interesting to access the
nearest level in the hierarchy

I Definition: distance in hops
between a processing entity
and the data to which it needs
to access

NUMA Node

RAM

Cores

Figure: Data Locality

How to control data locality?
I Locality-aware applications
I Data structures
I Locality-aware languages and compilers
I Data locality in runtime systems

Runtime improvement
Execution of applications

7 / 56

Context Problems Static Placement Dynamic placement Conclusion

Execution of applications: the placement issue

I One of the levers to optimize the execution of applications: Application
placement

Two assessments
I Amount of data exchanged between application entities not homogeneous
I Hardware: several levels of hierarchy with various performance

Cache hierarchy, memory bus, high-performance network, etc.
→ Placement policy has an impact on performance

5 10 15

5
10

15

Sender rank

Re
ce

ive
r r

an
k

Communication pattern

0.
0e

+0
0

5.
0e

+0
6

1.
0e

+0
7

1.
5e

+0
7

8 / 56

Context Problems Static Placement Dynamic placement Conclusion

Execution of applications: the placement issue

I One of the levers to optimize the execution of applications: Application
placement

Two assessments
I Amount of data exchanged between application entities not homogeneous
I Hardware: several levels of hierarchy with various performance

Cache hierarchy, memory bus, high-performance network, etc.
→ Placement policy has an impact on performance

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0.001 0.01 0.1 1 10 100 1000 10000

B
a
n

d
w

id
th

 i
n

 M
B

p
s

Message size (in KB)

Bandwidth according to transmitted bytes
Intel Xeon E5345

Inter-nodes
RAM shared

L3 shared

(a) Higher is better

Network

Memory

Cache

Cores

(b) Topology tree

9 / 56

Context Problems Static Placement Dynamic placement Conclusion

Execution of applications: the placement issue

I One of the levers to optimize the execution of applications: Application
placement

Two assessments
I Amount of data exchanged between application entities not homogeneous
I Hardware: several levels of hierarchy with various performance

Cache hierarchy, memory bus, high-performance network, etc.
→ Placement policy has an impact on performance

Network

Memory

Cache

Cores

n

n: amount of communication

n

10 / 56

Context Problems Static Placement Dynamic placement Conclusion

Expected issues

I Placement of parallel applications is a well-known problem
I But encountering scaling issues

Amount of memory per core decreasing
Accumulation of NUMA effects
More and more memory/communication-bound applications

2011 2012 2015 2018
#Nodes ∼ 20K ∼ 10K − 100K ∼ 5K − 50K ∼ 100K − 1000K

Cores/Node 12 16 - 32 100 - 1 000 1 000 - 10 000
Memory (PB) 0.3 0.3 - 0.5 5 32 - 64
GB RAM/Core 0.5 - 4 0.5 - 2 0.2 - 1 0.1 - 0.5

Table: Source: European Exascale Software Intiative.

General problems tackled in the PhD thesis
How to take into account data locality for large-scale platforms?

I Too much parallelism to apply application placement by hand
I Development of architectures, all very different
I Need an algorithmic solution considering the hardware characteristics

11 / 56

Context Problems Static Placement Dynamic placement Conclusion

Placement of parallel applications

I How does the application behave?
1: Affinity

I What is the underlying architecture?
2: Topology (tree)

I What is the goal?
3: Objective function

1: Affinity

2: Topology

3: Objective function

DistComm(σ)

Placement

σ =(0,3,1,4,2,5)

12 / 56

Context Problems Static Placement Dynamic placement Conclusion

1: Affinity

I Definition: relation between two processing
entities according to one or more criteria.

1: Affinity

I Possible metrics:
Amount of communication (e.g. number of messages exchanged)
I/O (e.g. amount of data to write on disk)
Memory access (e.g. data locality in physical memory banks)
etc.

0 1

2

3

45

6

7

80863

33

80863

80830

33

80862
80854

8086280863

80854

2480830

24

80854

Figure: Affinity pattern (graph) between processing entities
13 / 56

Context Problems Static Placement Dynamic placement Conclusion

1: Affinity

I Definition: relation between two processing
entities according to one or more criteria.

1: Affinity

I Possible metrics:
Amount of communication (e.g. number of messages exchanged)
I/O (e.g. amount of data to write on disk)
Memory access (e.g. data locality in physical memory banks)
etc.

I Solutions to gather this affinity pattern
Instrumented versions of runtime implementations (e.g. Open MPI)
Natively in runtimes (e.g. Charm++)
Trace tools (e.g. Eztrace)
Simulation (e.g. SimGrid)
Static analysis of the application
Data partitioning
Skeleton of the application

14 / 56

Context Problems Static Placement Dynamic placement Conclusion

2: Topology

I Gather topology information
No standard means to retrieve this

I hwloc is a solution
Abstracts the architecture’s characteristics
Shows the structure but what about the
costs?

2: Topology

I Topology modelling: quantitative or qualitative approach?
Qualitative: structural information (provided by hwloc)
Quantitative: weighted topology

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#1

L3 (8192KB)

L2 (256KB)

L1d (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

Core P#1

PU P#2

L2 (256KB)

L1d (32KB)

Core P#2

PU P#4

L2 (256KB)

L1d (32KB)

Core P#3

PU P#6

NUMANode P#1 (12GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1d (32KB)

Core P#0

PU P#1

L2 (256KB)

L1d (32KB)

Core P#1

PU P#3

L2 (256KB)

L1d (32KB)

Core P#2

PU P#5

L2 (256KB)

L1d (32KB)

Core P#3

PU P#7

Figure: Hardware topology of an Intel Xeon X5550 architecture

15 / 56

Context Problems Static Placement Dynamic placement Conclusion

2: Topology

I Gather topology information
No standard means to retrieve this

I hwloc is a solution
Abstracts the architecture’s characteristics
Shows the structure but what about the
costs?

2: Topology

I Topology modelling: quantitative or qualitative approach?
Qualitative: structural information (provided by hwloc)
Quantitative: weighted topology

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0.001 0.01 0.1 1 10 100 1000 10000

B
a
n

d
w

id
th

 i
n

 M
B

p
s

Message size (in KB)

Bandwidth according to transmitted bytes
Intel Xeon E5345

Inter-nodes
RAM shared

L3 shared

16 / 56

Context Problems Static Placement Dynamic placement Conclusion

3: Objective function

I What do we would like to optimize?
I As input:

A = (VA, ωA) the affinity graph with
• VA: the processing entities
• ωA(u, v): an affinity metric

H = (VH , ωH) the topology tree
• VH : the topology nodes
• ωH (u, v) the weight of the topology’s

edges

3: Objective function

DistComm(σ)

I Application placement: σ : VA → VH

I DistComm(σ) : Amount of data weighted by the crossed distance in tree
Qualitative approach
Tree topology only

I DistComm(σ) = Z × 2+ Y × 4+ X × 6
Z : Amount of data going through the level 2
Y : Amount of data going through the level 1
X : Amount of data going through the root
We have proved that minDistComm(σ) is
NP-Hard

X

Y

Z

17 / 56

Context Problems Static Placement Dynamic placement Conclusion

3: Objective function

I What do we would like to optimize?
I As input:

A = (VA, ωA) the affinity graph with
• VA: the processing entities
• ωA(u, v): an affinity metric

H = (VH , ωH) the topology tree
• VH : the topology nodes
• ωH (u, v) the weight of the topology’s

edges

3: Objective function

DistComm(σ)

I Application placement: σ : VA → VH

I DistComm(σ) : Amount of data weighted by the crossed distance in tree
Qualitative approach
Tree topology only

I DistComm(σ) = Z × 2+ Y × 4+ X × 6
Z : Amount of data going through the level 2
Y : Amount of data going through the level 1
X : Amount of data going through the root
We have proved that minDistComm(σ) is
NP-Hard

X

Y

Z

18 / 56

Context Problems Static Placement Dynamic placement Conclusion

3: Objective function

I What do we would like to optimize?
I As input:

A = (VA, ωA) the affinity graph with
• VA: the processing entities
• ωA(u, v): an affinity metric

H = (VH , ωH) the topology tree
• VH : the topology nodes
• ωH (u, v) the weight of the topology’s

edges

3: Objective function

DistComm(σ)

I Application placement: σ : VA → VH

I DistComm(σ) : Amount of data weighted by the crossed distance in tree
Qualitative approach
Tree topology only

I DistComm(σ) = Z × 2+ Y × 4+ X × 6
Z : Amount of data going through the level 2
Y : Amount of data going through the level 1
X : Amount of data going through the root
We have proved that minDistComm(σ) is
NP-Hard

X

Y

Z

19 / 56

Context Problems Static Placement Dynamic placement Conclusion

3: Objective function

I What do we would like to optimize?
I As input:

A = (VA, ωA) the affinity graph with
• VA: the processing entities
• ωA(u, v): an affinity metric

H = (VH , ωH) the topology tree
• VH : the topology nodes
• ωH (u, v) the weight of the topology’s

edges

3: Objective function

DistComm(σ)

I Application placement: σ : VA → VH

I DistComm(σ) : Amount of data weighted by the crossed distance in tree
Qualitative approach
Tree topology only

I DistComm(σ) = Z × 2+ Y × 4+ X × 6
Z : Amount of data going through the level 2
Y : Amount of data going through the level 1
X : Amount of data going through the root
We have proved that minDistComm(σ) is
NP-Hard

X

Y

Z

20 / 56

Context Problems Static Placement Dynamic placement Conclusion

The TreeMatch algorithm

I Algorithm1,2 and environment to compute processing entities placement
based on their affinities and NUMA topology

I Requires tree topology, based on a qualitative approach

I Input:
The affinity pattern of the application
A model (tree) of the underlying architecture (qualitative approach)

I Output:
A processes permutation σ such that σi is the core number on which we
have to bind the process i

I Goal:
minDistComm(σ)

I Combinatorial complexity with optimality to 128 processing entities then
heuristic for larger input

1E. Jeannot and G. Mercier. “Near-optimal placement of MPI processes on hierarchical
NUMA architectures”. In: Euro-Par 2010-Parallel Processing (2010), pp. 199–210.

2Emmanuel Jeannot, Guillaume Mercier, and François Tessier. “Process Placement in
Multicore Clusters: Algorithmic Issues and Practical Techniques”. In: IEEE Transactions on
Parallel and Distributed Systems (2014).

21 / 56

Context Problems Static Placement Dynamic placement Conclusion

Issues in application placement for large-scale platforms

Assessments
I Simulation applications need to scale on large and complex platforms
I Hierarchical hardware topologies
I Placement policy has an impact on performance

Problems: How to efficiently place parallel applications according to
the affinity and the topology?

Several tracks
I Static placement

Proof of concept of TreeMatch on parallel platforms
Understand the impact of placement of parallel applications (metrics, etc.)

I Dynamic placement
Dynamically improve the data locality during the execution
Temporality notion for affinity
Combine the topology-aware placement with CPU load balancing

22 / 56

Context Problems Static Placement Dynamic placement Conclusion

Outline

1 Context

2 Problems

3 Static placement

4 Dynamic placement

5 Conclusion

23 / 56

Context Problems Static Placement Dynamic placement Conclusion

Static placement

Static placement
I Processing entities mapped at launch time on computing units
I One mapping for the application lifetime

Objectives
I Minimize execution time but: how?
I Evaluate the relevance of minimizing the communication costs

Contributions
I Proof of concept of TreeMatch for parallel platform

Case study to evaluate the static application placement and the impact of
affinity metrics

I TreeMatch improvements
Taking into consideration constraints
Proof of the NP-Completeness of minDistComm(σ)

24 / 56

Context Problems Static Placement Dynamic placement Conclusion

Toy example

Nodes

RAM

Cache

Cores (σi)

5 10 15

5
10

15

16x16 Communication pattern

Sender rank

R
ec

ei
ve

r
ra

nk

0
2

4
6

8

σ =(0,2,8,10,4,
6,12,14,1,3,9,
11,5,7,13,15)

=⇒

5 10 15

5
10

15

16x16 Communication pattern

Sender rank

R
ec

ei
ve

r
ra

nk

0
2

4
6

8

25 / 56

Context Problems Static Placement Dynamic placement Conclusion

Toy example

Nodes

RAM

Cache

Cores (σi)

5 10 15

5
10

15

16x16 Communication pattern

Sender rank

R
ec

ei
ve

r r
an

k

0
2

4
6

8

σ =(0,2,8,10,4,
6,12,14,1,3,9,
11,5,7,13,15)

=⇒

5 10 15

5
10

15

16x16 Communication pattern

Sender rank

R
ec

ei
ve

r r
an

k

0
2

4
6

8

26 / 56

Context Problems Static Placement Dynamic placement Conclusion

State of the Art

I Graph partitionners are able to give a solution to the placement problem
I Scotch (6.0.0), Chaco (2.2) and ParMETIS (3.1.1): graph partitionners
I MPIPP: randomized algorithm

Methods Hardware Paradigm NUMA Network Qualitative Dynamic
independent independent effects approach topology

MPIPP
√ √ √

Scotch
√ √

Tree

Chaco
√ √ √

ParMETIS
√ √ √ √

LibTopoMap
√ √

Träff
√ √

TreeMatch
√ √ √

Tree
√ √

I Comparison to hardware and paradigm independent methods
I Case study of a real application

27 / 56

Context Problems Static Placement Dynamic placement Conclusion

Case study

I PlaFRIM cluster
Nodes: Intel Xeon 5550 - 8 cores - 12 GB RAM

I ZeusMP/2
CFD Application
Irregular communication pattern

10 20 30 40 50 60

10
20

30
40

50
60

ZeusMP − 64 processes, msg metric − Baseline

Sender rank

R
ec

ei
ve

r
ra

nk

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

28 / 56

Context Problems Static Placement Dynamic placement Conclusion

Case study - Results

I Packed and Round Robin: standard strategies (Packed is the default
mapping in Open MPI)

I TreeMatch outperforms Packed and RR up to 25%
I Two versions of Scotch

Scotch_w : weighting of the topology after benchmarking
Scotch: Normalized weights
TreeMatch slightly better or comparable

0
10

0
20

0
30

0
40

0

Tr
ee

M
at

ch

S
co

tc
h

P
ac

ke
d

R
R

M
P

IP
P

1

M
P

IP
P

5

P
ar

M
E

T
IS

S
co

tc
h_

w

C
ha

co

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

64 processes

(a) 64 processes

0
20

0
40

0
60

0
80

0

Tr
ee

M
at

ch

S
co

tc
h

P
ac

ke
d

R
R

M
P

IP
P

5

M
P

IP
P

1

P
ar

M
E

T
IS

C
ha

co

S
co

tc
h_

w

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

128 processes

(b) 128 processes
0

50
0

10
00

Tr
ee

M
at

ch

S
co

tc
h

R
R

P
ac

ke
d

M
P

IP
P

5

P
ar

M
E

T
IS

M
P

IP
P

1

S
co

tc
h_

w

C
ha

co

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

256 processes

(c) 256 processes

29 / 56

Context Problems Static Placement Dynamic placement Conclusion

Case study - Communication distribution

I Impact of static placement on the amount of communication going
through the topology links

I ZeusMP/2 on 16 cores (2 nodes), one node depicted
In thousand of messages exchanged

I A large amount of communication transferred to the subtrees

1427 1427

425 713 713 407 425 713 713 407

(a) With default placement

832 832

718 718 718 718 709 709 709 709

−41, 7%

26, 4%

(b) With TreeMatch placement

30 / 56

Context Problems Static Placement Dynamic placement Conclusion

Mapping time for benchmarks (Sparse matrices)

I New heuristic for TreeMatch makes it to improve scalability beyond 128
processes

I Follow a linear curve on large cases
I Around 1 second to 128 processes then comparable to Scotch

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

E
x
e
cu

ti
o
n
 t

im
e
 (

in
 m

s)

Number of processes

Mapping time comparison between TreeMatch
 and the other graph partitionners on large affinity patterns

TreeMatch
Scotch
Chaco

MPIPP-1
MPIPP-5

ParMETIS

The mapping time is a scalability constraint for dynamic placement

31 / 56

Context Problems Static Placement Dynamic placement Conclusion

Mapping time for benchmarks (Sparse matrices)

I New heuristic for TreeMatch makes it to improve scalability beyond 128
processes

I Follow a linear curve on large cases
I Around 1 second to 128 processes then comparable to Scotch

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

E
x
e
cu

ti
o
n
 t

im
e
 (

in
 m

s)

Number of processes

Mapping time comparison between TreeMatch
 and the other graph partitionners on large affinity patterns

TreeMatch
Scotch
Chaco

MPIPP-1
MPIPP-5

ParMETIS

The mapping time is a scalability constraint for dynamic placement

32 / 56

Context Problems Static Placement Dynamic placement Conclusion

Outline

1 Context

2 Problems

3 Static placement

4 Dynamic placement

5 Conclusion

33 / 56

Context Problems Static Placement Dynamic placement Conclusion

Goals and programming model

Objectives
I Improve data locality dynamically
I Take advantage of load balancing systems to add a topology-aware

component
I Consider affinity temporality

Charm++
I Fine-grained paradigm: cooperating objects called chares
I Plugable load balancing algorithms at launch time

Native Charm++ load balancers
Quantitative topology-aware load balancers: NucoLB, HwTopoLB3

I Load balancers able to natively migrate chares
I Adaptive runtime system supplying chares and cores statistics (load,

affinity, etc.)
Contributions

I Two load balancers respectively for:
Compute-bound applications
Communication-bound applications

I Work in collaboration with the JLPC and the PPL

3Laércio L Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, Chao Mei, Abhinav Bhatele,
Philippe OA Navaux, François Broquedis, Jean-François Méhaut, and Laxmikant V Kale. “A
Hierarchical Approach for Load Balancing on Parallel Multi-core Systems”. In: Parallel
Processing (ICPP), 2012 41st International Conference on. IEEE. 2012, pp. 118–127. 34 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_Min_Weight for compute-bound applications

I Load balancing for compute-bound applications
I Algorithm steps

Reorders chares on cores with TreeMatch (favouring CPU load balancing)
Reorders groups of chares on cores to minimize the migrations

I Assignment problem resolved by the Hungarian algorithm
Find a independent set of minimal weight
Applied on migration cost matrix

Nodes

Memory

Cores 0 2 4 6 1 3 5 7

C
P

U
 L

oa
d

5 7

For each group, sorting
according to the CPU load +

placement on cores

5 7

TreeMatch

Leaves of the fake topology

Network (Tree, torus, etc)

35 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_Min_Weight - Minimizing migrations

I Load balancing for compute-bound applications
I Algorithm steps

Reorders chares on cores with TreeMatch (favouring CPU load balancing)
Reorders groups of chares on cores to minimize the migrations

I Assignment problem resolved by the Hungarian algorithm
Find a independent set of minimal weight
Applied on migration cost matrix

4 2 4 4 1 4 1 4

3 2 4 4 4 1 4 4

4 3 2 2 4 4 4 4

4 4 3 3 3 4 4 2

1 4 4 4 2 4 3 4

4 4 1 3 4 3 4 4

4 3 4 4 2 4 2 3

4 4 4 3 4 3 3 2

Cores

Memory

Nodes

0 2 4 6

Groups of chares

1 3 5 7

C
P

U
 L

oa
d

Groups

C
or

es

Network (Tree, torus, etc)

36 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_Min_Weight - Results

I LeanMD: Charm++-based molecular dynamics application
Compute-bound application
Very unbalanced

I Compared to natives Charm++ load balancers
GreedyLB: highest loaded chare on less loaded core
RefineLB: chares from overloaded cores to less loaded ones to reach average

I Up to 30% of gain compared to the baseline and between 5% and 10%
compared to the native load balancers

I Amount of migrations
Migration time reduced by 5% with the Hungarian algorithm

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Particles per cell

LeanMD on 64 cores - 960 chares

Baseline
GreedyLB
RefineLB

TMLB_min_weight

37 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_Min_Weight - Results

I LeanMD: Charm++-based molecular dynamics application
Compute-bound application
Very unbalanced

I Compared to natives Charm++ load balancers
GreedyLB: highest loaded chare on less loaded core
RefineLB: chares from overloaded cores to less loaded ones to reach average

I Up to 30% of gain compared to the baseline and between 5% and 10%
compared to the native load balancers

I Amount of migrations
Migration time reduced by 5% with the Hungarian algorithm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000

N
u
m

b
e
r

o
f

m
ig

ra
te

d
 c

h
a
re

s

Particles per cell

Number of migrated chares in LeanMD
960 chares - 64 cores

GreedyLB
RefineLB

TMLB_min_weight

38 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased for communication-bound applications

I Load balancing for communication-bound applications
I Hierarchical and distributed algorithm

Reorders groups of chares on nodes (LibTopoMap)
Reorders chares inside each node: TreeMatch with constraints
Each node in parallel

Cores

Memory

0 2 1 3 0 2 1 3

Groups of chares assigned on nodes

Nodes

LibTopoMap

Network (tree, torus, etc)
Node

Memory

Cores3120

TreeMatchConstraints
Leaves of the fake topology
Leaves with constraint

39 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased for communication-bound applications

I Load balancing for communication-bound applications
I Hierarchical and distributed algorithm

Reorders groups of chares on nodes (LibTopoMap)
Reorders chares inside each node: TreeMatch with constraints
Each node in parallel

I Algorithm designed for scalability
Consider the network to perform a first placement on nodes
Parallel and distributed topology-aware load balancing inside nodes
No sensitivity to initial placement

40 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Network

How to deal with the network topology?

I TreeMatch works only on
tree topologies

I LibTopoMap: library able
to place processes on any
network topology

Example: 3D torus Cray
Gemini network

I Algorithm steps
Convert the batch
scheduler allocation to
a readable format for
LibTopoMap
Apply network
placement (groups of
chares on nodes) with
LibTopoMap

Node

Node

Cray Gemini
Router

z

y

x

41 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Network

How to deal with the network topology?

I TreeMatch works only on
tree topologies

I LibTopoMap: library able
to place processes on any
network topology

Example: 3D torus Cray
Gemini network

I Algorithm steps
Convert the batch
scheduler allocation to
a readable format for
LibTopoMap
Apply network
placement (groups of
chares on nodes) with
LibTopoMap

0

6

8

2

4

15

9

3

42 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Network

How to deal with the network topology?

I TreeMatch works only on
tree topologies

I LibTopoMap: library able
to place processes on any
network topology

Example: 3D torus Cray
Gemini network

I Algorithm steps
Convert the batch
scheduler allocation to
a readable format for
LibTopoMap
Apply network
placement (groups of
chares on nodes) with
LibTopoMap

43 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Parallelization

How to improve the algorithm scalability?

I Parallelized and distributed version of TMLB_TreeBased
Two levels of parallelization

• OpenMP
• The Charm++ mechanisms for distribution

Up to 130% of improvement compared to the fully sequential version
• Carried out on 16 nodes (32 cores/node)
• Parallel part: TreeMatch called on each node

Master node

Node 1 Node 2 Node 3

: processing unit

1 : Parallel distribution

mi :

N the node set

, i ∈ N

2 : Local calculation

σ : →

3 : Results

σi = {2, 5, 1, 0, 3, 4}

44 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Parallelization

How to improve the algorithm scalability?

I Parallelized and distributed version of TMLB_TreeBased
Two levels of parallelization

• OpenMP
• The Charm++ mechanisms for distribution

Up to 130% of improvement compared to the fully sequential version
• Carried out on 16 nodes (32 cores/node)
• Parallel part: TreeMatch called on each node

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Sequential

Distributed

Sequential

Distributed

Sequential

Distributed

E
x
e
cu

ti
o
n
 t

im
e
s

(i
n
 s

e
co

n
d
s)

Number of chares

Time repartition for each step of the TMLB_TreeBased algorithm

Initialization
Sequential part

Parallel part

1638481924096
45 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Behavior faced with the initial placement

What is the sensitivity of TMLB_TreeBased to initial placement?

I Application (kNeighbor) for which the optimal placement is known
I Testbed: Intel Xeon Nehalem X5550 (8 cores)
I TMLB_TreeBased VS optimal placement VS default placement

The initial mapping may vary according to the core numbering
I No sensitivity of TMLB_TreeBased to initial placement
I Converge to the optimal placement

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16

A
v
e
ra

g
e
 t

im
e
 f

o
r

e
a
ch

 7
-k

N
e
ig

h
b

o
r

it
e
ra

ti
o
n
 (

in
 m

s)

Number of chares by core

Execution time versus chares by core

Baseline Round Robin
Baseline Packed

TMLB_TreeBased (RR / Packed)

46 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - commBench

I Benchmark simulating
irregular communications

I Execution time
improvement up to 25%
on 512 cores

I RefineCommLB:
locality-aware version of
RefineLB

10 20 30 40 50 60

10
20

30
40

50
60

Chares comm matrix − CommBench − 1 BW node

Sender rank

R
ec

ei
ve

r
ra

nk

0
10

00
20

00
30

00
40

00
50

00
60

00

47 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - commBench

I Benchmark simulating
irregular communications

I Execution time
improvement up to 25%
on 512 cores

I RefineCommLB:
locality-aware version of
RefineLB

0
50

10
0

15
0

B
as

el
in

e

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

A
ve

ra
ge

 ti
m

e
of

 o
ne

 it
er

at
io

n
in

 m
s

commBench on 512 cores
8192 elements − 1MB message size

48 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - commBench

I Scalability: 8192 cores (256 XE6 nodes) on Blue Waters
I Up to 65536 chares, i.e. 8 chares/core
I Native Charm++ load balancers do not work at such scale
I 28% of improvement compared to baseline

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8

A
v
e
ra

g
e
 t

im
e
 f

o
r

e
a
ch

 c
o
m

m
B

e
n
ch

it
e
ra

ti
o
n
 (

in
 m

s)

Number of chares per core

Execution time according to the number of chares/core
8192 cores (256 XE6 nodes) - 1MB message size

Baseline
TMLB_TreeBased

49 / 56

Context Problems Static Placement Dynamic placement Conclusion

TMLB_TreeBased - Results analysis

I Communication distribution on the topology links before and after the call
to TMLB_TreeBased (in thousands of messages)

Locality of communication improved

864 864

652 640 672 692

348 380 404 372 392 400 412 376

(a) Before load balancing

−7, 5%

−1, 8%

+0, 7%

800 800

620 636 688 664

364 376 396 376 420 404 360 408

(b) After the call to TMLB_TreeBased

50 / 56

Context Problems Static Placement Dynamic placement Conclusion

Dynamic placement - partial conclusion

I Able to apply topology-aware load balancing
For compute-bound applications
For communication-bound applications

I Joint work with the PPL at Urbana and the JLPC4

4François Tessier, Emmanuel Jeannot, Esteban Meneses, Guillaume Mercier, and
Gengbin Zheng. “Communication and Topology-aware Load Balancing in Charm++ with
TreeMatch”. Anglais. In: IEEE Cluster 2013. Indianapolis, États-Unis: IEEE, Sept. 2013.
URL: http://hal.inria.fr/hal-00851148.

51 / 56

http://hal.inria.fr/hal-00851148

Context Problems Static Placement Dynamic placement Conclusion

Outline

1 Context

2 Problems

3 Static placement

4 Dynamic placement

5 Conclusion

52 / 56

Context Problems Static Placement Dynamic placement Conclusion

Conclusion

Problems
I Take into account data locality for applications in large-scale platform
I More precisely, efficiently place parallel applications according to the

affinity and the topology

Contributions
I Static placement

Proof of concept of the TreeMatch algorithm on parallel platforms
Proof that minDistComm(σ) is NP-Hard
Significant amount of experiments
Improve real application up to 25% compared to default mappings

I Dynamic placement
Application independent Charm++ load balancers for compute-bound and
communication-bound applications
Up to 30% of gain on a compute-bound application
Outperforms by 25% the native load balancers on large-scale experiments
Overcomes a limitation of the TreeMatch algorithm: oversubscribing

53 / 56

Context Problems Static Placement Dynamic placement Conclusion

Perspectives

Short and medium term
I TreeMatch algorithm improvements

Include partitioning algorithms from Scotch
Network awareness: LibTopoMap, Scotch, hwloc
Oversubscribing management implementation

I Better understand the criteria that impact performance when doing
placement

Hardware counters
Skeleton of applications

Long term
I How to measure affinity ?

I Other ways to take action in applications execution
Affinity-aware job allocations: Adèle Villiermet PhD thesis

I Placement techniques for storage resources: new collaboration with ANL
in the context of the JLESC

Topology-aware I/O aggregation

54 / 56

Context Problems Static Placement Dynamic placement Conclusion

Conclusion

Thank you for your attention!

55 / 56

Mapping time on dense affinity matrices

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

T
e
m

p
s

d
'e

x
é
cu

ti
o
n
 (

in
 m

s)

Nombre de processus

Comparaison du temps de calcul du placement entre TreeMatch
et d'autres méthodes considérant des modèles d'affinité

denses de grande taille

TreeMatch
Scotch
Chaco

MPIPP-1
MPIPP-5

ParMETIS

56 / 56

Mapping time on dense affinity matrices

I Load balancing time compared to other strategies
TMLB_TreeBased is slower than the native strategies
Counterbalanced by the quality of the topology-aware load balancing

 0.1

 1

 10

 100

 1000

 10000

128 256 512 1024 2048 4096 8192

E
x
e
cu

ti
o
n
 t

im
e
 (

in
 m

s)

Number of chares

Execution time of load balancing
strategies (running on 128 cores)

GreedyCommLB
GreedyLB

RefineCommLB
TMLB_TreeBased

57 / 56

	Context
	Problems
	Static placement
	Dynamic placement
	Conclusion

